

Pile Foundation PFAHL+

Contents

Application options	2
Basis of calculation	4
Data entry	5
General operating instructions	5
Basic parameters	6
Structural system	8
Pile system	8
Pile material	9
Soil profile	10
Groundwater	10
Loading	11
Pile loads	11
Negative skin friction	12
Lateral pressure	13
Design	14
Axial pile resistances	14
Lateral pile resistances / subgrade areas	15
Deformations (Displacements)	15
Reinforcement dialog (ribbon)	16
Cross-section	17
Plan view	17
3-D view	17
Output	18
Scope of the output, calculation, results	18
Connected programs	18
Definition options in the graphical user interface	19

Basic Documentation – Overview

In addition to the individual program manuals, you will find basic explanations on the operation of the programs on our homepage <u>www.frilo.com</u> in the Campus-download-section.

Application options

The new FRILO program PFAHL+ allows you to verify the internal and external load-bearing capacity of bored piles with rectangular and circular cross-sections.

Via interfaces to the proven FRILO programs Soil Settlement (SBR+) and Earth Pressure Calculation (EDB+), both the soil settlements in the pile environment and the lateral earth pressure acting on the piles can be taken into account. By comparing the pile settlements and the soil settlements along the pile skin surface, an action from negative skin friction up to the neutral point can be optionally applied.

The axial pile resistances, due to skin friction and end-bearing pressure, can optionally be determined either by evaluating static or dynamic pile test loads or based on empirical values given by the recommendations of the pile work group <u>"EA-Pfähle"</u> separately for the serviceability limit state (SLS) and the ultimate limit state (ULS). The recommendations on piles are published by the German Geotechnical Society DGGT. For a resulting tensile load in the pile, the axial pile resistances from skin friction are verified analogously. For tension piles, the verification of the safety against uplift (UPL) is optionally performed with the help of an attached soil prism.

In the verification of the external pile load-bearing capacity in the horizontal direction, the user-defined pile foundation is relocated to deeper soil layers until the resulting foundation stresses no longer exceed the maximum earth resistance stresses.

The design of the reinforced concrete cross-sections is performed on the basis of a non-linear calculation with consideration of second-order additional loads and the actual pile stiffnesses due to freely selectable reinforcement.

Available standards

- DIN EN 1997 / DIN EN 1992
- ÖNORM EN 1997 / ÖNORM EN 1992

Model

The user can define any number of horizontal soil layers and an aquifer.

The pile system can consist of a single pile or a group of piles with circular or rectangular cross-sections. The design is always performed for a single pile without giving consideration to any effect of the pile group. By defining a group of piles, the decisive lateral earth pressure acting on a single pile can be determined in accordance with the recommendations on piles. The user can optionally take a toe expansion for circular piles into account.

Loading and superposition

For the calculation of the soil settlements in the environment of the pile shaft, the user can define a surface load over a wide area.

Optionally, the self-weight of the piles can be included automatically.

The user can define the external loads acting on the piles either as vertical head loads, optionally also in connection with an eccentricity, or as horizontal head loads or also as head moments related to the main axes in the x- or y-direction in each case.

The number of load cases and their kind of action are freely selectable.

Automatic superposition of the load cases according to the applicable superposition rules is also integrated.

The application of variable loads and the number of decisive design load combinations can be controlled via the assignment of variable loads to alternative and concurrency groups.

Optionally, additional loading due to negative skin friction can be taken into account up to the neutral point if the soil settlements in the area of the pile skin surface are greater than the pile settlements. As a calculation approach, both a direct specification of the negative skin friction force and an automatic calculation (via interface to the Soil Settlement program SBR+) using pile and soil settlements are available for selection. In

this calculation, a distinction is always made between the two limit states ULS (Ultimate Limit State) and SLS (Serviceability Limit State).

Optionally, the user can define an action from lateral earth pressure acting on the piles in the x- or y-direction. When doing so, he/she can either take any user-defined load polygons into account or have the decisive lateral earth pressure automatically calculated from flow pressure or earth pressure via the interface to the Earth Pressure Calculation program EDB+.

Result options

The user can display all results as graphics or tables with a well-structured result list that is customizable in terms of scope and details. Especially the following results are put out:

- Comparison of pile settlement and soil settlement with representations of the neutral points in the serviceability and ultimate limit states for the derivation of negative skin friction.
- Mapping of the resistance settlement curve for the point-bearing pressure, the skin friction and the pile bearing capacity derived from empirical values or test loading.
- Design internal forces for compression and tension piles in the serviceability limit state (SLS) and the ultimate limit state (ULS).
- Mobilised foundation stresses, both in the direction of the main axes and as a resultant.
- Superposition of the foundation stresses with the earth resistance to represent the required stress limitation and the relocations of the foundation stresses to greater depth, if applicable.
- Deformation of the pile along the main axes in the serviceability limit state SLS.
- Representation of the selected and/or required reinforcement.

Planned extensions

In a subsequent version, additional pile systems (such as pre-fabricated driven piles, in-situ concrete piles, partial displacement piles, screw piles, displacement piles and micropiles) will be added. Most importantly, the empirical values for skin friction and point-bearing pressure given in the tables in section 5.4 of the recommendations on piles "EA-Pfähle" will be implemented for these systems, so that the decisive resistances can be automatically derived from the characteristic values of the undrained shear strength $c_{u,k}$ or the mean point-bearing resistance q_c of the pressure probe for each soil layer. For the design of the internal load-bearing capacity of these pile systems, a steel design feature will be implemented in addition.

Moreover, the evaluation of dynamic pile test loading will be implemented in addition to allow the derivation of the decisive pile resistances.

Also, the calculation of pile groups with consideration of the group effects is being planned in order to simulate the different load-bearing behaviour of the individual piles within a group. In this connection, a polygonal soil layer and topographical model will then also be available to consider different soil stratifications along individual piles within the group.

Interfaces to other programs

- Soil Settlement SBR+ (calculation of the decisive settlement in the pile environment to determine the negative skin friction)
- Earth Pressure Calculation EDB+ (calculation of the decisive lateral earth pressure and the earth resistances)
- Reinforced Concrete Column B5+ (calculation of the pile as a column on elastic foundation)
- Interface from GEO/PLT to Pfahl+: Piles below floor slabs can be modelled this way, loads from the floor slab can be passed on to the piles. When called from the <u>building model</u>, support springs are returned to the building model after the calculation.

Basis of calculation

The basis of calculation is described in the separate (german) document.

Data entry

General operating instructions

Wizard

The wizard is launched automatically when you start the program.

You can enter quickly the most important key figures of the structural system in the displayed window. These values can be edited subsequently in the input section or on the <u>Graphical User Interface (GUI)</u>. Self-defined items can be imported as templates. To save them as a template go to \blacktriangleright File \blacktriangleright Save as \flat and select the option "Use as template".

Graphical user interface GUI

See <u>Definition options in the graphical user interface</u>. See also <u>Graphical User Interface (GUI)</u> in the Basic Operating Instructions-PLUS.

Interactive dimensional chains

As in all Plus programs, the dimensional values are editable and can be changed directly in the graphical user interface.

Interactive texts

The texts displayed in the top left section of the GUI are interactive as in all PLUS programs and can be clicked on. This allows you to display dialogs in the GUI, which are otherwise only accessible via the menu on the left. See also the <u>Basic Operating Instructions-PLUS</u>.

д 90

Properties

Basic parameters

Geotechnica	Standards	and ca	alculat	ion	mode

Foundation standard	definition of the standard and its national annex. - DIN EN 1997 - ÖNORM EN 1997	Basic parameter B. System Cading B. Design Cutput		Q (0)
Optimisation		Foundation code end calcula	tion mode	۵
Optimisation	Check this option if the geometry of the pile	Foundation standard	DIN EN 1997:2010	-
	is to be adjusted for the geotechnical	Optimisation		0
	verifications, if necessary.	Optimisation		
Optimisation parameters	Click the edit button to display the dialog for	Optimisation parameters		1
	the optimisation parameters. Here you	Proofs		0
	define how the pile geometry is to be	Check execution standard		
	optimised:	Design options		0
	Via the shaft length, the cross-section or	Reinforced concrete design		
	both. Please note the information on the individual parameters displayed in the lower part of the window.	Check of soil body		
		PSF for BHg,d		1.50
Dreafe		Stress limitation		
Proois		Bar subdivision		100
Check execution standard	Check this option if the boundary conditions	Design Standards and Safety	Concept	0
	of the execution standard are to be checked.	Design Standard	DIN EN 1992:2015	+
Design options		ψ2 for crane loads		1.00
Reinforced concrete desig	n check this option to perform a reinforced	Snow as accidental loads		
	concrete design.	$\psi 2 = 0.5$ for snow (AE)		
Check soil body	check this option if you want to perform a verification in the limit state UPLIFT for tension piles.	Location in windzone 3 or 4		
check son body		Equal yG for all permanent loads		\checkmark
		Design situations		0
PSF for BHa.d	partial safety factor for the determination of	Structural safety	Permanent	+
	the design value of the resulting soil resistance force.	Serviceability	Common design situation	
			Rare design situation	
Stress limitation	if you check this option, the soil stresses are		Quasi-permanent design sit	ituation
	limited automatically for the verification of lat Currently, this option is only available for test activation of this option will come with the ne become a testing customer? If so, please con	erally loaded piles. ing customers. The gener xt release. Would you like tact our hotline.	al to	

Design Standard and Safety Concept

Design standard	select the load design standard the structural safety analysis is based on. If you use Eurocodes and specify the national version the associated National Annex is also referred to. Currently, the reinforced concrete based on DIN EN 1992, ÖNORM EN 1992 or BS EN 1992 is supported.
ψ2 for crane loads	combination coefficient $\psi 2$ for crane loads (relation of the permanent portion to the total crane load).
Snow as accidental load	when you check this option, snow loads are considered as accidental action in addition to the common design situations.
Load factor for snow (A)	this factor is used to take the accidental snow load related to its characteristic value into account. You can freely specify it (check option, to enter the value) or have it automatically calculated by the program.

ψ2 = 0.5 for snow	check this option to increase the value of the combination coefficient ψ 2 to 0.5 for snow action in the seismic design situation (AE). (See introductory decrees of the German federal states, e. g. Baden-Württemberg).
Located in wind zone	check this option, if the building is located in wind zone 3 or 4. In this case, 'snow' is not considered as an accompanying action to 'wind', which is the leading action.
Equal γG	if this option is checked, all permanent loads or load cases are applied together with the same partial safety factor (γ G,sup or γ G,inf), otherwise permanent loads are combined independently with their lower and upper partial safety factors.
Design situations	
Structural safety	Selection of the design situation for the structural safety checks (permanent, transient).
Serviceability	Selection of the design situation for the serviceability checks (rare, common, quasi-permanent).

Structural system

Pile foundation system

Pile foundation type	select whether a <u>single pile</u> or a <u>group of</u> <u>piles</u> is used.
Attached soil body	when you enable the check of the soil body in the <u>basic parameters</u> , you can specify here the width of the attached soil body in the x- and y-direction for the uplift verification of an individual pile.
Group of piles	
Layout	in a row or staggered (offset).

Arrangement in the x-direction or y-direction: Grid dimension mean spacing of the piles.

Number of piles number of piles in the group per direction.

The decisive pile spacing and the dimensions are displayed as information.

Remarks

You can optionally enter comments on the system that are subsequently included in the output. See also <u>Remarks Editor</u>.

Pile system

Type of pile (sort)	Selection of the type: drilled (bored) / micro drilled / reinforced concrete prefabricated.
Type of cross-section	the reinforced concrete pile can have a rectangular or circular cross-section.
Shaft diameter	diameter of the circular bored pile.
Width/height	dimensions of a rectangular pile cross-section.
Reinforcement layer	definition of the reinforcement layer in all directions by specifying the distance between the adjacent outer surface and the centre of gravity of the longitudinal reinforcement bars.
Shaft length	shaft length of the bored pile (without expanded bottom end).
Inclination	angle between member axis and vertical.
Toe expansion	check this option if the bored pile shall be installed with an expanded bottom at its toe (only available for circular cross-sections). Length: definition of the length of the toe expansion of a bored pile. Diameter: diameter of the toe expansion of a bored pile.
Bearing conditions	Discrete bearing condition for translation/rotation (rigid, 0 = free, > 0 elastically supported).

Pile foundation system			0
Pile foundation type		Pile grou	ip 1
Layout		Single pi	le
Arrangement in the x-direction		File grou	p (S)
Grid dimension in x-direction	ax	[m]	5.00
Number of piles in the x direction	nx		5
Decisive pile spacing	a'x	[m]	5.00
Dimension in x-direction	Bx	[m]	20.00
Arrangement in the y-direction			0
Grid dimension in y-direction	ay	[m]	5.00
Number of piles in y-direction	ny		5
Decisive pile spacing	a'y	[m]	5.00
Dimension in y-direction	By	[m]	20.00
Remarks			0
about the system			1

Pile sort		Drilled pile	•
Cross-section		Driled pile micro driled pile	•
Cross-section type		Reinforced concrete prefa	
Shaft diameter	ds	[cm]	90.0
Reinforcement layer	d1	[cm]	5.0
Pile dimensions			0
Shaft length	Ls	[m]	16.40
Inclination	α	[1]	0.0
Toe expansion			\checkmark
Length	Lb	[m]	0.00
Diameter	Db	[cm]	0.0
Bearing conditions	at th	e pile cap	0
Bearing conditions	at th	e pile base	Ø

•
•
•

Pile material

Selection option for the concrete quality or the steel grade.

		Concrete quality	C 25/30			
Creep		Steel quality	B500B			
lanore creen effects	this option disables the option (and the data- entry fields) for the inclusion of any creep effects.	Creep				
ignore creep cheets		Ignore creep effects				
		Default end creep number				
Pre-set final creen factor	check the option to specify a user-defined factor. Otherwise, it is calculated automatically using ambient parameters. Default value for the final creep factor of concrete; increase factor applied to the final creep factor to account for non-linear creep	Soil Humidity Bu	[%]			
Fie-set final cleep lactor		Loading duration t0	[b]			
		Cement type	N			
		Reinforcement specifications / durability				
		Durability	XC2/X0 >> C16/20			
		Longitudinal bar diameter	[mm]			
	Background information: The final creep	Stirrup diameter	[mm]			
	for a permanent load level of approx. 45 % of the compressive concrete strength. If the permanent load level is higher, an increased creep factor must be used in the calculation in accordance with EN 1992-1-1, 3.1.4. If the verification whether the inclusion of linear creep is permissible fails in a first calculation run, you can specify here the necessary increase factor as per EN 1992-1-1, 3.1.4 (4), Eq. 3.7.					
Soil Humidity	relative humidity of the ambient air in per cent.					
Loading duration	concrete age in days at the time when the load	is applied.				
Cement type	type of cement in accordance with EN 1992, N,	R or S.				

Concrete material

Reinforcement specifications /durability

Durability	accesses the durability dialog where you can define the parameters – see the document <u>Durability - Creep Factor and Shrinkage Strain.pdf</u> ".
Bar/stirrup diameter	diameter of the longitudinal reinforcement bars or the stirrups. This diameter is used as a basic value when starting the calculation on the cross-section (exposure classes, reinforcement layer). The final diameter is determined when working through the <u>reinforcement layout</u> after the calculation.

🔘 1/3 🜔 🛃 🗙 🔠 🗃 🌌

Soft layer

[kN/m3]

[kN/m3]

[kN/m]

Total tension

[kN/m²]

[kN/m]

kN/m4

[kN/m²]

kN/m²

Es [kN/m²]

d [m]

Y

Y*

φ'

c' [kN/m2]

ΦU

cu,k

a n,k

qs,k(ssq*)

qs,k(sg)

qb.k (0,035*D)

-

Schluff

5.40

18.00

8.00

0

22.5

5.00

0.0

4500.00

• 1.00

0

0.00

0.00

0.00 📝

0.00

0.00

0.00 📝

10.00

Soil profile

Soil layers

Designation

Thickness

Cohesion

Cohesion

Rigid module

Approach

Qbk0035

Stroke weight

Buoyant unit weight

Soil drained parameters

Undrained soil parameters

Effective friction angle

Effective friction angle

Settlement parameter

Shear strength coefficient

Skin friction at ssg*

Skin friction at sg

Soil parameters pile resistances

Peak pressure resistance qb,k (0,02*D)

Peak pressure resistance qb,k (0,03*D)

Peak pressure resistance qb,k (0,1*D) [kN/m]

Soil parameters for negative skin friction

Type of soil layer

General soil parameter

Soil profile

You can define the soil layers directly in the left menu (see <u>Basic Operating Instructions-PLUS</u> – Data-entry via tables) or via a well-structured table. To access the table, click on the "Soil layers" tap below the GUI.

General soil parameters

Type of soil layer	the available options to define a soil layer are the following: - backfill, - soft layer or - base course (bearing layer).
Designation	designation of the soil layer.
Thickness	specification of the thickness of the soil layer.
Specific weight	specific weight $\boldsymbol{\gamma}$ of the soil.
Specific weight under	
buoyancy	specific weight γ' of the soil layer under buoyancy.

Parameters of the drained/undrained soil

Friction angle	characteristic value of the internal friction angle of the drained/undrained soil.
Cohesion	cohesion of cohesive soils in drained/undrained condition.

Settlement parameter

Stiffness modulus stiffness modulus *E*_s of the selected soil layer.

Soil parameters for negative skin friction

soils.

Approach	you can select whether the characteristic values of the negative skin friction shall be specified by the user or be determined using the effective stress method or total stress method.
Shear strength coefficient	coefficient for the shear strength to calculate negative skin friction in accordance with the total stress method. The magnitude of the factor α ranges from 0.15 to 1.60, depending on the kind of soil and the type of pile. It is often set to $\alpha = 1$ often as an approximation. This value is generally recommended for cohesive

Soil parameters pile resistances

Skin friction	Characteristic value of skin friction.
Peak pressure resistance	Characteristic value of peak pressure resistance for 0.02*D/0.03*D/0.1*D.

Groundwater

Groundwater	when you check this option, groundwater is considered.
Groundwater level	depth of the groundwater level, measured from the ground top edge.

Loading

Select in the left menu under Loads whether self-weight should be included in the calculation or not.

Surface load specification of a permanent surface load applying to a large area. By clicking on the arrow icon access a load value compilation.

Remarks

You can optionally enter comments to the loads. These comments are included in the output. See also <u>Remarks Editor</u>.

Pile loads

You can define pile loads in the left menu - see <u>Data entry via tables in the Basic Operating Instructions-PLUS</u> – or in a well-structured table accessible via the Pile loads tab below the GUI.

<u> </u>	Soil I	layers 🔲 F	Pile	loads 📃 Sid	de loads 📃 Subgra	de areas								×
		Sort		Direction	Direction of rotation	Fk	Mk	ex	ey	Description	Action	Simultaneous Group	Alternate Group	3
						[kN]	[kNm]	[mm]	[mm]					
	1	Head load	-	vertical		2000.0 🛄	1771	0	0		Permanent loads			4
	2	Head load	T.	vertical		1000.0 🛄	100	0	0		Cat. A: domestic, residental areas	none 🗾	none 🗹	彊
		Head load Head moment	h	Ì										

Type (Sort)	head load/head moment. Select whether the load is a force or a moment, the adjacent data-entry fields for the direction, the direction of rotation, the force F_k or the moment M_k are enabled accordingly.			
Direction	direction of action of the force: vertical, in x-direction or y-direction.			
Direction of rotation	direction of rotation of the moment: about the x-axis or the y-axis.			
Force <i>F</i> _k	entry of the value of the force. By clicking on the arrow icon 🔤 , you can access a Load Value Compilation.			
Moment M_x/M_y	entry of the value of the moment.			
Eccentricity e _x /e _y	definition of an eccentricity in the x-/y-direction for a vertical head load.			
Description	optional brief description of the load.			
Action	selection of the action in accordance with EN 1990 Table A.1.1 or user- defined action.			
Simultaneous group	loads of a simultaneous group always act together.			
Alternative group	loads of an alternative group always act individually and are not superimposed.			
Note	Simultaneous/Alternative Groups: Select "New group" to create a group with a consecutive number (Ccy 1, Ccy 2 etc.) You can also add descriptions to simultaneous or alternative groups, which are included in the output			

Negative skin friction

Calculation approach	solaction whather pagative skin friction	Properties			д
Calculation approach	should be included and in which way.	Basic parameter	•		٩ 🔿
Pre-set as resultant	characteristic value of the negative skin friction in the ULS (Ultimate Limit State) the SLS (Serviceability Limit State)	Coding Coding Pile loads Negative sk Lateral press Design	in friction sure		
Calculation based on settlem	nents				
Calculation	start the calculation of the negative	Negative skin frict	ion		0
	skin friction based on the specified	Calculation approach	h	Calculation via settlement 🔹	
	settlement parameters by activating	Calculation		without	
	this option.	Settlement-genera	ating soil lay	e Calculation via	settlement
Datum (upper/lower level)	upper/lower datum of the soft layers	Upper level	zo	[m]	2.00
	relevant for settlement in relation to the	Lower level	zu	[m]	10.00
	ground top edge.	Settlements			0
Soil settlement s _{n,k}	$S_{n,k}$ is the settlement of the soil layers	Soil settlement	sn,k	[cm]	0.0 📝
	to the load-bearing subsoil to be	Pile settlement (ULS)) sn,k (ULS)	[cm]	0.0
	expected due to a subsequent top load	Pile settlement (SLS)	sn,k (SLS)	[cm]	0.0
	Using the edit button you can	Neutral design poi	ints		0
	optionally start the program Soil	Neutral point (ULS)		[m]	0.00
	Settlement <u>SBR+</u> to calculate the value	Neutral point (SLS)		[m]	0.00
	and transfer it to the PFAHL+ program	Resulting skin frict	tion		0
	via "Save and return".	Skin friction (ULS)	Fn,k(ULS)	[kN]	0.0
Pile settlement	ULS: limit settlement of the pile in the	Skin friction (SLS)	Fn,k(SLS)	[kN]	0.0
Neutral point	ultimate limit state or calculated settlement in the ultimate limit state. SLS: settlement to be expected in the ser indication of the position of the neutral po	viceability limit s pint in the ultima	tate te limit sta	ate	
Skin friction	(ULS)/SERVICEADILITY IIMIT STATE (SLS).	the ultimate limit	state		
	(ULS)/serviceability limit state (SLS).		5.010		

Lateral pressure

You can define pile loads in the left menu - see <u>Data entry via tables in the Basic Operating Instructions-PLUS</u> – or in a well-structured table accessible via the Pile loads tab below the GUI.

Determine lateral loads

optionally, you can launch the program Earth Pressure Calculation <u>EDB+</u> to determine the lateral loads.

Load directi	n zo	p,zo	zu	p,zu	Remar	ks 🌍
0	[m]	[kN/m]	[m]	[kN/m]		
1 in x direction	K 0.	00 5.0	0 🛄 16.40	10.00	1	4
in x direction	45					
in y-direction						橿
in y-direction		direction of a	ation of the later	ial loads in the	v. or v diroo	tion
in y-direction		direction of a	ction of the later	al load: in the	x- or y-direc	tion.
in y-direction bad direction atum z_0/z_0		direction of a ndicates the	ction of the later upper/lower dat	al load: in the um for the up	x- or y-direc per/lower lo	tion. ad value of the I
bad direction atum z_0/z_u		direction of a ndicates the oad <i>p</i> , measu	ction of the later upper/lower dat ıred from the pil	al load: in the um for the up e top.	x- or y-direc per/lower lo	tion. ad value of the I
in y-direction bad direction atum z_0/z_0 bad value at p_{70}/p_0		direction of a ndicates the oad <i>p</i> , measu	ction of the later upper/lower dat ired from the pil the upper/lowe	al load: in the um for the up e top. r datum.	x- or y-direc per/lower lo	tion. ad value of the I
in y-direction bad direction atum z_0/z_0 bad value at p_{z0}/p	u	direction of a ndicates the oad <i>p</i> , measu _oad value at	ction of the later upper/lower dat ired from the pil the upper/lowe	al load: in the um for the up e top. r datum.	x- or y-direc per/lower lo	tion. ad value of the l

Design

Design method			
Nonlinear design Serviceability	optionally, you can perform a cold design based on the general method as per EN 1992-1-1, 5.8.6. The method is based on a non-linear determination of the second- order internal forces with consideration of the non- linear material behaviour of concrete and reinforcing steel.	Properties Basic parameter System Loading Axial pile resistances Lateral pile resistances Displacements	म २ 🔇
Ignore min. <i>A</i> s compression members	checking this option disables the consideration of the minimum longitudinal reinforcement for compression members, which results in accordance with EN 1992-1-1, 9.5.2.	Design method Nonlinear design Serviceability Ignore Min As compression members	0
Ignore minimum eccentricities	checking this option disables the consideration of the minimum eccentricity with compression-loaded cross- sections, which results in accordance with EN 1992-1-1, 6.1 (4). In standard cases, the minimum eccentricities only have an effect in pile areas in which the moments from imperfections have a zero crossing.	Ignore minimum eccentricities designed like a wall Remarks about resistances about the results	
Design as wall	enables the treatment of the pile as a wall. The design at rules for walls are applied irrespective of the actual cros dimensions.	nd reinforcement s-sectional	

Remarks

You can optionally enter comments to be included in the output document behind the resistances/calculation results. See also <u>Remarks Editor</u>.

Axial pile resistances

Resistance of the pile to compression

Calculation approach	options for the determination of the pile's resistance to compression: - Static trial loads, - Dynamic test loads or - Empirical values.
Specification/Evaluation	selection whether the pile pressure resistance is specified (pre-set) or calculated.
R _{c,k} pre-set	user-defined characteristic values of the total pile resistance (compression), separately for the ultimate limit state ULS and the serviceability limit state SLS.
Pressure resistance <i>R</i> _{c,k}	characteristic compression resistance of the pile, separately for the ultimate limit state ULS and the serviceability limit state SLS, determined from a static pile test load or from empirical values, depending on the selected calculation approach.

RckUlsVorgabe Rc,k (ULS)	Dynamic test load Empirical values	ds
RckSlsVorgabe Rc,k (SLS)	[kN] 75	00.0
Pile tensile resistances		0
Calculation approach	Static trial loads	-
Specification/Evaluation	Default	+
RtkUlsVorgabe Rt,k (ULS)	[kN]	0.0
RtkSlsVorgabe Rt,k (SLS)	[kN]	0.0

Resistance of the pile to tension

Calculation approach	options for the determination of the pile's resistance to tension: - Static trial loads, or - Skin friction.
Specification/Evaluation	selection whether the pile tensile resistance is specified (pre-set) or calculated.
R _{t,k} pre-set	user-defined characteristic values of the total pile resistance (tension), separately for the ultimate limit state ULS and the serviceability limit state SLS.
Tensile resistance $R_{t,k}$	characteristic tension resistance of the pile, separately for the ultimate limit state ULS and the serviceability limit state SLS, determined from a static pile test load.

Lateral pile resistances / subgrade areas

Calculation approach	calculation approach to determine the lateral resistances (subgrade reaction modulus method).	
Subgrade reaction modulus method	click on the edit button <i>constant</i> to start the determination of the subgrade areas based on the soil parameters (layer thicknesses).	
Subgrade areas	indicates the calculated values of the upper datum $z_{o,i}$ /lower datum $z_{u,i}$ and the pertaining length of the subgrade area l_i .	
Subgrade reaction values	$ select the calculation approach. \\ - Definition via stiffness modulus: \\ E_{s,k,i} & characteristic value of the stiffness modulus. \\ - Definition via subgrade reaction modulus: \\ D_{s,j} & equivalent shaft diameter or relevant cross-section width. \\ k_{s,k,i} & characteristic value of the subgrade reaction modulus. \\ $	
Earth resistances	earth resistance at the upper/lower datum.	
Spatial earth resistances	spatial earth resistance at the upper/lower datum.	

Deformations (Displacements)

Permissible horizontal displacementsenter the permissible/resulting deformation of the pile head.Limit of the vertical displacementindicates the permissible limit settlement of the pile head in the
serviceability limit state (SLS).

Reinforcement dialog (ribbon)

Reinforcement layout

The reinforcement layout can either be created automatically or defined manually.

Access via the button in the upper menu bar.

Note: Click on the small arrow pointing downwards to access the options "Generate reinforcement patterns" and "Remove reinforcement patterns".

Generate reinforcement patterns

Automatically arranges the reinforcement for every single cross-section.

Remove reinforcement patterns

Removes all existing the reinforcement patterns.

Edit reinforcement layout

Click on the centre of the button to access the reinforcement layout dialog which allows you to create and edit reinforcement patterns.

Cross-section

Graphical view of the cross-section. Allows you to set reinforcement parameters such as the longitudinal and transverse reinforcement, the spacing/the position etc.

Column segment

For multi-part columns, select the column segment for which the reinforcement layout is to be created.

Automatic reinforcement laying/arrangement

Opens the dialog for selecting the reinforcement arrangement - the options available for selection are self-explanatory.

In the right dialog area, select the spacing, the diameters of the longitudinal bars and stirrups as well as the maximum grain.

Reinforcement layer

You can add or remove bars via the corresponding icons.

Interactive reinforcement GUI

The graphical user interface is interactive, i. e. you can add/remove bars or increase/reduce diameters using the +/- icons or the context menu (right mouse button).

Plan view

Graphical view from the side.

Compaction areas:

As per standard	controls the automatic determination of the compaction areas of the transverse reinforcement.
lv,top/bottom	length of the compaction areas of the transverse reinforcement at the upper/lower segment end.
Pre-set steel qty. Asw	pre-set value for the referenced cross-sectional area of the transverse reinforcement

3-D view

The right mouse button can be used to rotate and tilt the view.

Output

Scope of the output, calculation, results

To start the output, click on the Calculate button.

After the calculation, the loading is displayed in the bottom right-hand corner of the GUI and provides a good overview of the economic efficiency of the structural system entered.

Results

Via the "Results" tab, you can display the different result graphs.

Output scope

By checking the desired options, you can determine the scope of data to be put out.

Output as a PDF document

Via the <u>Document</u> tab, you can display the document in PDF and print it. See also <u>Output and printing.pdf</u>

Connected programs

You can launch the interfaced programs Soil Settlement SBR+, Earth Pressure Calculation EDB+ and Reinforced Concrete Column B5+.

 Reinforced	concrete	design

		0
all on/off		A
Pile system		0
Pile system		
Scale pile system	1:200	
Soil profile		\checkmark
Material		
Load		0
Actions		
Load groups		
Pile loads		A 🗸
Scale pile loads	1:100	-
Negative skin friction		A .
Side loads		A .

Definition options in the graphical user interface

Use the right mouse button to display the context menu.

For data entry in the GUI in the PLUS programs, see also the Basic Operating Instructions PLUS.

For example, dimensions or load values can be directly clicked and changed in the GUI. Other data-entry options are accessible via the general context menu (right click on an empty area in the GUI) or via the context menu of the pile or via the interactive texts on top left. By clicking the +/- icon on bottom, you can add or remove a toe expansion.

