

Reinforced Raft Foundation FDR+

Contents

Application options	2
Basis of calculation	5
Basis of calculation in accordance with Kanya, Bautechnik 1969	6
Other parameters to be included	8
Data entry – Basic parameters	9
System	10
Foundation	10
Slab	11
Wall	11
Soil	12
Groundwater	16
Surface	16
Loads	17
Load Cases	17
Design	19
Reinforcement	19
Enhanced reinforcement dialog	20
Soil Mechanics	21
Ground failure – extended soil mechanics dialog	22
Parameter	24
Output	25

Basic Documentation – Overview

In addition to the individual program manuals, you will find basic explanations on the operation of the programs on our homepage <u>www.frilo.com</u> in the Campus-download-section.

Application options

The FDR+ application allows the design of eccentrically loaded boundary foundations that are connected to a reinforced concrete slab with a rigid joint. In the design, the centring moment, the centring tensile force and the soil pressure are determined with consideration to deformations.

Properties

- Selection options concerning the durability requirements
- Load definition: moments, axial forces, horizontal loads
- Different load cases, that apply alternatively or simultaneously according to the user's selection, are automatically superimposed
- Determination of the base pressure as well as the design value of the base pressure resistance with the help of tables in the selected soil engineering standards or of user-defined tables taken from a soil expertise, for instance
- Examination and consideration of a gaping joint
- Consideration of the accidental design situations BS-A and BS-E
- Interface to the FRILO Building Model (GEO)
- The self-weights of the wall, the facing masonry and the foundation can be selected independently of each other
- Optional calculation of the connecting reinforcement of the rising wall to the foundation
- Bending design of the foundation and verification whether reinforcement could be dispensed with in the lower layer of the foundation
- Centring in the rigidly connected reinforced concrete slab in accordance with J. Kanya, Bautechnik 05/1969
- Simultaneous restraint in the wall and the slab is optionally selectable
- Bending design at the connection between the foundation and the reinforced concrete slab
- Calculation of settlement effects
- Calculation of the foundation's deformation
- Verification of the concrete compression stress and the steel tensile stress at the connection to the slab
- Crack width verification at the connection to the slab
- Ground failure verification with consideration of berms and the anchoring depth of the foundation
- Simplified verification using the design value of the base pressure resistance as a rule
- Reinforcing steel mesh, steel bar or user-defined As values are the available reinforcement options

Limits of application

The following conditions in accordance with <u>Kanya</u>, Bautechnik 05-1969 are to be complied with when using the software:

- The foundation of the building is designed in such a way as to ensure that all foundations are subject to the same average settlement in the centre of gravity of their surface areas (no settlement variations).
- The eccentrically loaded border foundation can rotate around the fulcrum "D".
- The adjacent central foundation is torsionally stiff.
- A pure structural system is assumed, i.e. there are no disturbing connecting devices parallel to the supporting direction of the centring plate.
- The centring plate is appropriately reinforced and softly supported. No external influence acts additionally on the centring plate.
- The border foundation is infinitely stiff in itself.
- The self-weight of the centring plate is negligibly small compared to the applying load.

Note:

The stiffness modulus should be selected with utmost care. Because the cross section in the connection between the floor slab and the foundation can tear off widely, you can reduce the stiffness of the floor slab with a pre-factor. You can also define a factor for the bending stiffness of the wall.

Actions and loads

Loads are always defined with characteristic values. You can define loads as acting alternatively. The alternative group numbers are available for this. When you assign the alternative group 0 to the defined load, this means that it can participate in all load combinations generated with the combination rules. If two or more loads are members of the same alternative group, they never act simultaneously.

For the structural components wall, facing masonry and foundation, you can activate or deactivate the selfweight separately. The activated self-weight portions, which are calculated automatically, are included in the combinatorial analysis.

Verifications in the ultimate limit state

You can select different concrete types and reinforcing steels for the wall, the foundation and the connected reinforced concrete slab. You can also define masonry for the wall. In order to provide for the required reinforcement, you can define woven steel fabric and/or rebar. If the selected reinforcement exceeds the required quantity in the ultimate limit state, it is included in the verification of the serviceability limit state instead of the required reinforcement. Dialogs for the selection of the exposure classes and the determination of the shrinkage coefficient and the creep factor are available in connection with the durability and serviceability requirements. The resulting concrete coverage and reinforcement layers are taken into account. The bending design is based on the kh (kd) method. If the wall is connected to the foundation in a deflection-resistant manner, the foundation is dimensioned in the contact face of the wall. Otherwise, the bending moment centrally underneath the wall is taken into account in the design. The minimum reinforcements of the wall, the foundation and the slab can be selected independently of each other. The software checks whether the foundation can be installed without reinforcement in the lower layer. The shear force analysis is performed at the distance from the wall that is equal to the structurally effective height d. The user can select whether the foundation should be designed as a reinforced concrete slab or a reinforcement in each case.

Verifications in the serviceability limit state

The deformation of the foundation is calculated for the quasi permanent and infrequent load combinations. In this calculation, the displacement of individual points in the foundation is indicated as a fraction of the foundation width (e.g. L/500) and torsion is specified in degrees. In addition to the deformation analysis, verifications are performed in accordance with the selected reinforced concrete standard. They include verifications of the compressive concrete stress, the tensile steel stress as well as the calculation of the

existing crack width and the limit diameter of the reinforcement at the connection of the reinforced concrete slab and the foundation. In these calculations, a creep factor that can optionally either be defined by the user or be calculated by the software is taken into account.

Verifications in the ultimate limit state

Simplified verification, normally using the design value of the base pressure resistance

Based on the calculation method by <u>Kanya</u>, the software calculates a trapezoidal or, if a gaping joint occurs, a triangular base pressure distribution, which is compared to the selected design value of the base pressure resistance. Optionally, the permissible base pressure can be taken from a table in the selected foundation engineering standard, a table in a soil expertise or the user can enter a user-defined value. As far as the gaping joint is concerned, the software checks whether a gaping joint occurs when only permanent loads apply and whether the gaping joint produced by permanent and variable loads is greater than half of the foundation width.

Ground failure analysis

In addition to the verification of the base pressure, the FDR+ software offers the possibility of performing a ground failure analysis as per DIN 4017 [2006-03] or ÖNORM B 4435-2 [1999-10]. In this verification, a homogenous soil layer above the foundation base and a homogenous soil layer underneath the foundation base are assumed. These layers are determined by the ground failure pattern calculated from the individual soil layers. A berm adjacent to the foundation can be taken into consideration. The relation of the foundation thickness *d* to the foundation width *b* should not exceed 2 in this calculation.

Basis of calculation

Available standards

- DIN EN 1992-1-1:2011/2012/2013/2015
- ÖNORM EN 1992-1-1:2011/2018
- BS EN 1992-1-1:2015/2009
- NF EN 1992-1-1:2016
- PN EN 1992-1-1:2010
- EN 1992-1-1:2010/2014
- DIN EN 1997-1:2010
- ÖNORM EN 1997-1:2013
- BS EN 1997-1:2014
- NF EN 1997-1:2018
- PN EN 1997-1:2011
- EN 1997-1:2009

National design standards

- DIN 1054:2005/2010/2021
- DIN 4017:2006
- DIN 4019:2014
- ÖNORM B 4435-2:1999 sowie
- J. Kanya / Bautechnik 05/1969
- NF P 94-261:2013

Basis of calculation in accordance with Kanya, Bautechnik 1969

Initial values

а	= foundation height
b	= foundation width
С	= load distance from outer edge of the foundation
d	= slab thickness
I	= clear distance between two neighbouring strip foundations
Eb	= modulus of elasticity of the concrete
l _b	= moment of inertia of a slab cross section with a width of 1 cm
l _b	= surface area of a slab cross section with a width of 1 cm
Е _{во}	= stiffness modulus of the subsoil
C _{Bo}	= subgrade reaction modulus of the subsoil
S _{Bo}	= shear modulus of the subsoil
Р	= resulting vertical load

Initial values - foundation restrained in the slab

$$\alpha = 3,2 \cdot \frac{E_{b} \cdot I_{b}}{1 \cdot E_{Bo}}$$

$$\beta = \alpha - \frac{d}{2}$$

$$\gamma = \frac{P}{b}$$

$$\delta = \frac{2 \cdot \beta^{2}}{3 \cdot F_{b} \cdot E_{b} + 2,5 \cdot I \cdot E_{Bo}} \cdot F_{b} \cdot E_{b}$$

Special case - foundation restrained in the wall and the slab, wall hinged on top

$$\begin{aligned} \zeta &= \left(\frac{I_{Wall}}{3 \cdot E_{Wall} \cdot I_{Wall}}\right) / \left(\frac{I_{Slab}}{4 \cdot E_{Slab} \cdot I_{Slab}}\right) \\ \alpha &= 3, 2 \cdot \frac{E_b \cdot I_b}{I \cdot E_{Bo}} \cdot \frac{1}{1 + \zeta} \\ M_{Wall} &= \frac{\zeta \cdot M_Z}{1 + \zeta} \\ M_{Slab} &= M_Z - M_{Wall} \end{aligned}$$

Special case - foundation restrained in the wall and the slab, wall restrained on top

$$\zeta = \left(\frac{I_{Wall}}{4 \cdot E_{Wall} \cdot I_{Wall}}\right) / \left(\frac{I_{Slab}}{4 \cdot E_{Slab} \cdot I_{Slab}}\right)$$
$$\alpha = 3, 2 \cdot \frac{E_b \cdot I_b}{I \cdot E_{Bo}} \cdot \frac{1}{1 + \zeta}$$
$$M_{Wall} = \frac{\zeta \cdot M_Z}{1 + \zeta}$$

 $M_{Slab}=M_{Z}-M_{Wall}$

Exterior base pressure

$$\sigma_2 = \frac{\frac{2}{3} \cdot b^2 - c \cdot b + \delta + \alpha}{\frac{b^2}{6} + \delta + \alpha} \cdot \gamma$$

Interior base pressure

$$\sigma_1=\!2\cdot\gamma-\sigma_2$$

Special case - gaping joint

$$b' = \frac{+c \pm \sqrt{c^2 + \frac{4}{3}(\delta + \alpha)}}{2} \cdot 3$$
$$\sigma_2 = 2 \cdot \gamma' = 2 \cdot \left(\frac{P}{b'}\right)$$
$$\sigma_1 = 0$$

Distance of the base pressure resultant from the outer edge of the foundation

$$s = \frac{1}{3} \left(\frac{\sigma_1}{\sigma_1 + \sigma_2} + 1 \right) \cdot b$$

Base pressure underneath the calculated equivalent area

$$\sigma' = \frac{\left(\sigma_1 + \sigma_2\right) \cdot b}{4 \cdot s}$$

Internal forces inside the centring plate

$$M_{z} = (\sigma_{2} - \gamma) \cdot \alpha$$
$$H_{z} = (\sigma_{2} - \gamma) \cdot \frac{\delta}{\beta}$$

Subgrade reaction modulus

$$C_{Bo} = 2.5 \cdot \frac{E_{Bo}}{b}$$

Angle rotation due to the centring moment

$$\boldsymbol{\varphi} = \frac{1}{4} \cdot \frac{M_z}{E_b \cdot I_b} \cdot \boldsymbol{I}$$

Vertical displacement on the interior side

$$\Delta_1 = \frac{\sigma_1}{C_{Bo}}$$

Vertical displacement in the foundation centre

$$\Delta_{v} = \frac{\sigma_{1} + \sigma_{2}}{2 \cdot C_{BO}}$$

Vertical displacement on the exterior side

$$\Delta_2 = \frac{\sigma_2}{C_{Bo}}$$

Horizontal displacement on the bottom

$$\Delta_{\rm H} = \phi \left(a - \frac{d}{2} \right) - \Delta_{\rm Z}$$

Horizontal displacement on the top

$$\Delta_{\rm Z} = \frac{{\rm H}_{\rm Z} \cdot {\rm I}}{{\rm F}_{\rm B} \cdot {\rm E}_{\rm b}}$$

Other parameters to be included

Self-weights of the foundation, the wall and the facing masonry

You can active or deactivate separately the self-weights of the wall, the foundation and the facing masonry. Permanent loads always act simultaneously. The self-weight portions of the foundation, the wall and the facing masonry result from the defined values for the volume and the specific weight.

The self-weight is taken into account by generating a resulting load P, which is composed of the vertical loads of the respective load combination considering the associated combination rule and of the respective activated self-weight portions.

In this connection, a new resulting load distance C of the load P from the outer edge of the foundation is also calculated.

$$P = N_{Ed} + F_{Wall} + F_{facing} + F_{Foundation}$$

$$c = \frac{(N_{Ed} + F_{Wall}) \cdot I_{distance to axis, Wall} + F_{facing} \cdot I_{distance to axis, Facing} + F_{Foundation} \cdot I_{distance to axis, Foundation}}{N_{Ed} + F_{Wall} + F_{Facing} + F_{Foundation}}$$

Consideration of horizontal loads

ιE

In the calculation, horizontal loads are applied to the top of the foundation in the central axis of the wall. In the calculative approach of the software, they generate a moment with a lever arm that is as great as half the height of the connected reinforced concrete slab. The horizontal load itself is transferred through the foundation and considered in the design of the connection of the foundation to the reinforced concrete slab.

Consideration of moments

If moments are defined in addition to vertical loads or if moments result from the horizontal loads at the base of the wall, they influence the position of the resultant of the vertical loads. Moments defined as positive rotate the foundation clockwise towards the inside of the building. The resultant of the vertical loads is displaced by the length $e = M_{Ed} / P$ towards the inside of the building. Moments defined as negative act inversely because of the negative sign of e.

Data entry – Basic parameters

You can enter values and define control parameters in the menu on the left screen section. The effect of the entered values is immediately shown in the graphical representation on the right screen section. Before entering any data, you can edit the dimensional units (cm, m ...) via the options File > Program settings.

Wizard

The <u>definition wizard</u> is automatically launched when you start the software. You can disable the wizard in the settings menu.

Input options in the three-dimensional GUI

The data entry via the GUI is described in the document "Basic operating instructions-PLUS."

Basic parameters

Soil bearing resistance

If the option is selected, only the bearing capacity of the soil is output in the form of a table with the design values for the bearing pressure resistance.

Reinforced Concrete

Select the desired reinforced concrete standard: See <u>Basis of calculation</u>.

According to the selected reinforced concrete standard, the software selects the corresponding standards for foundation engineering and ground failure automatically.

Material

Select the type (normal/lightweight concrete) and quality of the concrete and the reinforcing steel grade as well as the material of the wall (masonry or concrete).

For the calculation of internal forces, of soil pressure and base pressure as well as of deformations, the modulus of elasticity of the connected reinforced concrete slab is used as a standard. Optionally, you can specify a user-defined modulus.

Location foundation

The global position related to the foundation axis is only required for communication with other programs such as GEO and SBR+.

Remarks

Click on the system.

Foundation

In the foundation ground plan, the x-axis (positive) runs from the left to the right and the y-axis (positive) from the bottom to the top.

Width	x foundation dimension in x-direction
Height	z foundation height
Anchoring depth d	Lowest foundation depth below the ground level or below the top edge of the basement floor.
Specific weight γ	Gamma concrete
Base inclination	Additional anchoring depth from base inclination.
Self-weight	Automatic inclusion of the self-weight of the foundation.

Properties д Basic parameter 90 S Foundation Slah Wall Soil Ground water Surface . Design . Output Foundation material 0 Type of concrete Normal-weight concrete Concrete C 25/30 Steel **B500A** Slab material (3) Type of concrete Normal-weight concrete -Concrete lormal-weight concre Leight-weight concrete 85008 Steel define E-Modulus Material wall (2) Wall Masonry -Location foundation 0 0.00 x [m] x y [m] 0.00 y 0.00 z z [m] Rotation angle α [°] 0.00 Remarks (3) Z ...to the system

Foundation		6					
Width	x	[m]	0.60				
Height	z	[m]	0.40				
Anchoring depth	d	[m]	0.40				
Density	Y	[kN/m ³]	25.00				
Base inclination	z,x	[m]	0.00				
Base inclination	z.y	[m]	0.00				
Base inclination	α,χ	[7]	0.00				
Base inclination	a,y	["]	0.00				
Self-weight	v						

۲

•

25.00

-0.15

۲ -

0.12

3.00

18.00

0.00

no clamp

without clinker

x hinged z no clamp γ [kN/m³]

z [m] γ [kN/m³]

Slab

Connection	The connection of the slab to the foundation can be flexurally rigid or	Slab 🔕							
	ningea.	Connection		flexural rigid	+				
Factor El	When selecting "flexurally rigid", it is the factor for the bending	factor El		flexural rigid					
	stiffness of the slab. It refers to the stiffness of the cross section in	Width	У	[hinged [m]	4.00				
	state I. Values up to 1.2 are possible.	Height	z	[m]	0.15				
Area load	When selecting "hinged" it refers to the permanent load portion of the reinforced concrete slab that is supposed to act on the foundation.								
Width	Clear distance between the foundations.								
Height	Height of the slab. The height affects the flexural rigidity of the slab and foundation.	d thus the tor	sion	of the					

Wall

Wall

Fixing on top	Specifies how the wall impedes torsion of the	Fixing head		no cl
	foundation:	Thickness	x	hinge
	hinged, restrained, no fixing/clamp.	Height	z	no cl
Factor El	Hinged: factor for the flexural rigidity of the slab. It	Density	Y	[kN/r
	refers to the stiffness of the cross section in state	Self-weight	Y	
	l.	Eccentricity	across	[m]
Thickness x	Thickness of the wall.	Clinker		
Height z	Height of the wall.	Clinker		witho
Density γ	Specific weight of the wall.	Thickness	х	[m]
Solfweight	Automatic inclusion of the colf weight of the	Height	z	[m]
Self-weight	foundation	Density	Y	[kN/r
		Self-weight	Y	
Eccentricity, transverse	Eccentricity in the x-direction.	Eccentricity	across	[m]
	Note: No positive values are intended for the eccentricity, because that would mean that the conne is bedded on the ground. This is not taken into accou For such cases it is recommended to calculate the sy	ected reinforced int in the calcula istem as beddeo	l concrete ation appro d beams.	slab bach.

Clinker / Wall facing

Clinker	Allows you to select whether facing masonry should be included in the calculation.
Thickness	Thickness of the facing masonry.
Height	Height of the facing masonry.
Density	Specific weight of the soil.
Self-weight	Activate this option to include the self-weight of the facing masonry automatically.
Eccentricity	Eccentricity of the facing masonry in the transverse direction.

 90

> 0 •

30.0

• 30.0

1.0

11.50 11.50

0.35

0

18.50

11.00

30.0

0.00

0 -

-20.0 50.0 0.40

edit create

open

From own table direct specification DIN 1054:2021 From own table

[°] 3/3 φ

[cm] [MN/m²]

[MN/m²]

[kN/m³]

[kN/m³]

[kN/m²]

Soil

Soil properties

	Determination $\sigma_{R,d}$	Select whether the design value of the bearing	Properties					
		resistance should be entered <u>directly</u> , or to come from a standard table (<u>DIN 1054</u>) or from a user defined <u>(own) table</u> - see section below.	Basic parameter System Foundation Stab					
	Bearing capacity	Specification of the permissible bearing pressure $\sigma_{R,d}$ In the case of "direct specification", input of the design value of the bearing pressure resistance $\sigma_{R,d}$ for the permanent design situation BS-P. For the design situations BS-A, BS-E and BS-T, the design value is increased according to the ratio of						
		the partial safety factors of the bearing capacity.	Soil properties		-			
		For example 1.4/1.2 = approx. 116% or 1.4/1.3 =	Determination	oK,d	From			
		approx. 107%.	cross section resistance	oR,d	DIN 1			
	Permissible settlement	Permissible settlement for comparison with the	permissible settlement	s,adm.	From			
		calculated settlement and presentation of the	Effective friction angle	φ				
		utilisation of the settlement verification.	Soil friction angle	OK Sk	3/3 ¢			
	Eff. friction angle ϕ	Friction angle of the drained soil underneath the	Son metion angle		LJ [am]			
	5	foundation base.	Chiffeeee welve	aom. v	[Cm]			
	Soil friction angle	The soil friction angle is relevant for the sliding	Sumess value	Es,min	TEANU.			
	Soli metion angle	safety check. If the angle of friction δ is not	Summess value Es,max					
		determined separately, the characteristic angle of	Table					
		friction ϕ 'k may be used instead of the critical	Table					
		angle of friction for in-situ concrete foundations. A			-			
		value of 35° must not be exceeded. The same	First soli layer					
		applies to prefabricated foundations if the precast	Stroke weight	Y	[kN/n			
		elements are laid in the mortar bed. If the	Buoyant unit weight	Y'	[kN/n			
		prefabricated foundations are smooth and without	Effective friction angle ϕ'					
		a mortar bed, the characteristic soil friction angle	Cohesion c'					
		$\delta k = 2/3 \phi' k$ shall be used.	Dialog					
	adm. deformations V	Permissible displacement. It is compared to the ma foundation in the vertical direction.	ximum displacement c	of the				
	Stiffness value	Es,min/max.; upper/lower limit of the stiffness mod and lower limits for the stiffness modulus. In each s unfavourable values are used. If the calculation sho enter the same value for the upper and the lower lim provided by the soil expert. Betonkalender 1998, par values for the stiffness modulus Es in MN/m ² : grav pure: 10.0 to 100.0 - coarse clay: 3.0 to 15, clay 1.0 to	ulus. You can define th uperposition, the most uld be performed witho it. The stiffness modu t 2, p. 472 specifies gu el, pure: 100.0 to 200.0 to 60.0 - peat 0.1 to 1.0	ie upp t out lim lus is iding) - san)	oer nits, nd,			
	Load tilt	With "direct specification" you can enter (if the optic inclination of the characteristic or representative ba is to be checked in the simplified verification. Other	n is ticked) the maxim se pressure resultant H wise, default values are	um H/V, w e usec	/hich d.			
	Dialog/Table	If the determination σR ,d is not specified directly, the design value of the bearing	Bearing pressure resistance	0.1497-04 ()				
		pressure resistance is taken from a table	Soil properties					
		(Standard or User defined)	According to Annex					
		tabledialog	Consistence rigid					
		เลมเรนเลเบy.	Increase (geometry)	[%]				
			Increase (strength)	[%]				
			Anchoring depth d	[m]				

Parameters by standard table DIN 1054:											
According to Annex	Selection of the table in the selected soil standard or the currently active NAD. The permissible base pressures are taken from this table.										
Consistency	Consistency of the soil: rigid, semi-solid, solid.										
Increase (geometry)	The permissible soil pressure can be increased by 20 % if the corresponding border conditions (b/d) specified in the standard are complied with.										
Increase (strength)	Optional increase by 50 % if the soil is sufficiently solid. <i>Note: The values are added up under particular conditions</i> (70 %).										
Anchoring depth d	Lowest foundation depth below the ground level or the top edge of the basement floor.										
From own table:											
Create:	Generates a table with design values of the bearing pressure resistance from several parameters.										
Edit:	Open the dialog to enter the design value of the bearing pressure resistance σ Rd. The value σ Rd should come from a geotechnical report and should have sufficient guarantees against ground failure and a sufficient limitation of settlements. Furthermore, the corresponding foundation width and anchoring depth must be specified.										
The meaning of the oth	The meaning of the other buttons can be each from the Tealting										

The meaning of the other buttons can be seen from the **Tooltips**.

FRILO Software GmbH

First soil layer

In this section you can enter the values of the first soil layer. For additional soil layers click the Button "Dialog – open".

Stroke weight	γ	Specific weight of the soil.
Buoyant unit weight	γ́	Specific weight of the soil layer under buoyancy. Define <u>ground water</u> to enable this data-entry field.
Eff. friction angle	φ́	Friction angle of the soil in this layer.
Cohesion	с'	Soil cohesion.

Dialog	ODE	en	
Cohesion	[kN/m²]	0.00	
Effective friction angle	φ'	[°]	30.0
Buoyant unit weight	Y'	[kN/m ³]	11.00
Stroke weight	Y	[kN/m ³]	18.50
Erste Bodenschicht			8

Additional soil layers / additional parameters (Dialog "open")

1.1	<u> </u>							1.0		F	DI				P. I		-	- 1		March 1	1.4.21.1.2.1	<u></u>
Library	Cat.	Name	ICON	Y IkN/m31	Y ftcN/m33	φ (°)	C IlcNI/m21	XU	V	Em IIcN/m21	PI fkN/m21	α	qc IkN/m21	E IIcN/m21	Procedure	-	E IkN/m21	ES [IrN/m2]	x	KS	both sides drained	Cα
Table		1	-	18.50	11.00	30.0	0.00	1.50	0.20	6000.00	700.00	0.50	1000.00	3500.00	direct specification	•	4946.00	2473.00	0.50	1E-09		0.003
Tuble		7		10.00	11.00	00.0	0.00	1.00	0.20	0000.00	100.00	0.00	1000.00	0000.00	direct specification		1010.00	2110.00	0.00	12.00		0.000
															from constrained modulus							
Table)				Defi	ned	layers	s/valu	ies c	an be	selec	cted	via a s	soil lag	yer library.							
Cate	vroc				Soil	cate	aorv	accor	dino	to Ar	nnex A	A of s	standa	ard NF	- P94-261. It is	in	nporta	ant for	the			
	J - J				bear	rina	capad	tity ca	alcula	ation	from	value	es of t	he pre	essiometer tes	t a	ccord	lina ta	Ann	ex		
					Dof	NF-	P94.7	961				· a. a.					000.0			071		
								.01.														
Nam	Ð				A na	ame	for th	e soil	laye	r can	be as	sign	ed he	re.								
Syml	loo				An a	abbre	eviatio	on for	the	soil la	ayer c	an be	e assi	gned	here.							
хU					Thic	kne	ss of	the so	oil lag	yer. S	oil lay	ers k	below	0.10 r	m cannot be de	efi	ned.					
V					The soo	Pois n as	sson's a stre	s ratio ess is	defi app	nes ti lied. T	he rat The Po	io of Dissc	a cha on's ra	nge ir tio or mate	n thickness to a transverse cor	a c ntra an	hang actior	e in le 1 coef	ngth ficier	as nt		
					of th	ne pł	nysici	st Sin	néon	Deni	s Pois	sson.	103110	mate		an			nan	C		
Em					Defi sett	ne tl Ieme	ne pre ent ca	essior Iculat	netri tion f	c moo from o	dulus data c	acco of a p	ording oressio	to Me omete	énard here. It is er test.	s n	eedeo	d for t	ne			
PI					The base	repr e of	esent	ative nallov	valu v fou	e of t ndati	he lim on.	nit pr	essure	e acco	ording to Ména	rd	in the	e foun	datio	n		
α					Rhe	olog	ical fa	actor	for s	ettler	nent o	calcu	lation	from	results of a pre	es	siome	eter te	st.			
qc					The elas	pea ticit	k pres y and	ssure frictio	resis on ar	stance ngle fo	e com or bas	ies fr se fai	om th	ne pre nd se	ssure test and ttlement calcul	de lat	erives ion.	modu	lus o	f		

Calculation of the settlement

Procedure	User-defined / based on stiffness modulus
	Select whether to enter a user-defined value for the modulus of compressibility E^* or have it calculated from the stiffness modulus and the correction factor (DIN 4019 P1).
E*	Modulus of compressibility. The compressibility of the soil can be obtained from a pressure settlement line or be calculated using the stiffness modulus and the correction factor.
Es	Stiffness modulus
х	Correction factor

Settlement analysis: Consolidation

ks	Coefficient of permeability for the consolidation speed. You can take the value from a soil expertise.
Both sides drained	For the calculation of the time until the consolidation settlement subsides approximatively, the full layer thickness is taken into account with drainage on one side. With drainage on both sides, only half of the layer thickness is taken into account.
Cα'	The creep coefficient Ca can be determined from a time-settlement test according to DIN 18135. Usual value range 0.001 to 0.00001.

p 90

> 0 0.80

0.00

0.18

10.0

5.67

-

Izi [m]

β [°]

1:

Height

Inclination

Inclination

Groundwater

Groundwater existing	Check this option when groundwater exists in the subsoil - the data-entry field for the depth of the ground water is displayed subsequently.
Groundwater	Absolute depth of the groundwater below the bottom edge of the foundation body.

Surface

Anchoring depth	Anchoring depth of the foundation body	Properties				
Additional Terrain load	Additional characteristic permanent area load on the bearing failure figure, which increases the characteristic punching shear resistance.	Basic parameter System Foundation Slab Wall			Basic parameter System System System System System Stab Wall	
Slope	The ground level can be modeled as horizontal, with a continuous slope, or with a broken embankment.	Soil Ground water Surface				
	<u>Continuous:</u> Here you can define a berm and the slope - see	≟⊷ Loading ∄. Design ∔. Output				
	advanced foundation dialog.	Ground left (-X)				
	Brokon	Anchoring depth	[m]			
	Input of the embankment sections. The "+" symbol	Additional terrain load	[kN/m²]			
	creates a new table row for a further section.	Slope	broken			
	Parameters are length, height or inclination or rise	Slope segments 🔘 1/1	without			
	(the height adjusts automatically to the incline).	Length Ixi	broken			

Loads

Delete horizontal loads:

The button allows you to delete all horizontal loads at once! This function can be helpful when importing load cases from other software applications (GEO, B5+...). You can define horizontal loads in the Load Cases dialogs.

Right-hand coordinate system (new standard)

Coordinate system based on the right-hand rule, also referred to as right-hand coordinate system. The signs comply with the sing definitions in engineering mechanics. Positive moments about the x-axis generate pressure on the bottom and/or in the negative area of the foundation. Positive moments about the y-axis generate pressure on the right and/or in the positive X-

Properties	д
Basic parameter	9.0
🗄 System	
🚊 🛛 Loading	
Load Cases	
⊕. Design	
⊕. Output	
Land Prove	0

Loading		0
Delete horizontal loads		1
right-handed coordinate system		\checkmark
Snow accidental		
Area load from concrete plate.	[kN]	0.00
Remarks		0
zu den Einwirkungen		1

area of the foundation. If this option is unchecked (default setting until recently) positive moments generate pressure on top right and/or in the positive X/Y-area of the foundation. In the graphic representation, both variants are shown with their absolute values. The arrows indicate the actual direction of action. The values in the data entry fields and in the output documents are indicated with their signs. If you change the sign definition, the sign of the moments about the y-axis changes as well.

Accidental snow load When you check this option, snow loads are automatically included as accidental action in addition to the typical design situations. The user can either specify a freely selectable load factor for the accidental snow loads or have it determined automatically by the software. The default value is 2.3

Area load from concrete plate Enter the permanent load component of the reinforced concrete slab here, which should act on the foundation.

Remarks

Click on the witton to enter your own comments on the actions.

Load Cases

Enter the data of the first load case either in the corresponding data-entry mask or directly in the load case table, which you can display below the

graphic by activating the Load Case button.

To add load cases, always set up a new load case first by activating the button (a data-entry mask for the new load case is displayed each time).

- See also Data entry via tables in the Basic operating instructions PLUS.pdf

Tip:A description is displayed in the status line each time you click
into a particular data-entry field.

Load value compilation

By clicking on the arrow icon would be access a load value compilation - see the description of the LOAD+ program.

Load Cases			8
Load Case	1/2	0 👍 🗙 🎽	1 🟦 🌶
Wall loads characteri	stic		0
Description		Lo	ad case 1
Action		Permanent load	s 🔹
Vertical force in z	k	[kN]	60.0
Moment about y	trans,k	[kNm]	0.00
Horizontal force in x	trans,k	[kN]	0.0
Group membership			0
Simultaneous group			0
Alternative group			0

Characteristic wall	loads
Description	Optional text to the selected action can be entered. This text is included in the output.
Action	The appropriate actions can be selected from a list: Permanent loads Earthquake.
Vertical force in z	Vertical force Nz in the centre of the wall
Moment about y	Moment M _{y,trans} defined with for the wall.
Horizontal force in x	Horizontal loads act on the top edge of the foundation. These horizontal loads generate moments on their way down to the foundation base, which are taken into account automatically.

Description	Act		Nz,k	My,trans,k	Hx,trans,k	SIM	ALT
			[kN]	[kNm]	[kN]		
Load case 1	Permanent loads	*	60.0 🕅	0.00	0.0 🖾	0	0
2 Load case 2	Cat. A: domestic, residental areas	-	60.0 🔛	0.00	0.0 🛄	0	0
	Cat. A: domestic, residental areas Cat. B: office areas Cat. C: congregation areas Cat. D: shopping areas Cat. E: storage areas Cat. F: traffic F <= 30 kN Cat. G: traffic F <= 30 kN Cat. G: traffic 30 kN < F <= 160 kN Cat. H: roofs						

Grouping

Simultaneous group (SIM)

Loads of a particular action group can be defined as "always acting simultaneously"

III.: Example for the functioning of alternative and concurrent groups

Alternative group (ALT)

Different variable load cases with similar actions can be combined to an alternative load case group by assigning an <u>alternative group number</u> to them. Only the decisive load case of this alternative load case group is invoked in the superposition.

Base pressure

Displaying the base pressure pattern

To ensure traceability, the base pressure pattern with stress ordinates (red and blue arrow icons in the multifunction bar) can be displayed in the 3D representation of the load arrangement for all load cases and superpositions decisive in the verifications. Click on the base pressure icon to activate the function. The graphic is displayed in a pop-up window. See chapter > Design > Soil Engineering.

Design

Settings

Minimum reinforcement	Ductility reinforcement in accordance with the selected reinforced concrete standard
Earthquake: Psi ₂ =0.5	In accordance with the introductory decree of DIN 4149 for Baden-Württemberg, the combination coefficient Psi2 = 0.5 for snow loads should be used in the superpositions with earthquake loads.
Shear force as beam	Specification whether the shear resistance should be verified on a slab or a beam.
Round out the course Min. eccentricity	only affects the graphical representation. Function: see tool tip or info text. Considering minimum eccentricities for compression member by EN 1992-1-1 6.1 (4).
Minimum reinforcement	This option allows you to take a minimum reinforcement for compression members into account.
Include transverse fabrics	The selected mats increase the calculatied predefined reinforcement also in the transverse direction.

Properties Basic parameter 90 + System - Loading De De Reinforcement Soil Mechanics Parameter - Output

Settings	0
Minimal reinforcement	
Transverse reinforcement 20 %	\checkmark
Earthquake: Psi2=0,5.	
Shear force as beam	
Round out the course of the internal forces	
Round out the course of the internal forces	
Min. eccentricity	
Min. reinforcement pressed member	\checkmark
Include transverse fabrics	\checkmark
Remarks	0
to the results	

Remarks

The <u>remarks editor</u> is called up via the *is* button. This text appears in the <u>output</u>.

Reinforcement

The software allows you to define non-specifically up to two layers of fabric and two layers of bar steel distributed over the entire foundation on top and bottom.

cv,b/s/t	Laying dimensions of the specified reinforcement on the bottom/outside/top of the foundation. The specified reinforcement is designed into the foundation body according to this laying dimension. Based on this, 2D and 3D graphics are created.	Design Reinforcement Soil Mechanics Parameter Output	
Reinforcement layer	• •	Verlegemaß unten cV u	[cm]
Bottom base	Reinforcement layer on the bottom of the foundation. The software uses this diameter to calculate a reinforcement that covers the requirements. If the minimum and maximum spacing cannot be realised with the initially defined diameters, higher diameters are used.	Concrete cover the sides cV,s	[cm]
		Verlegemaß oben cV,o	[cm]
		Layer of reinforcement Bottom base	[cm]
		Layer of reinforcement Platte oben	[cm]
		Layer of reinforcement Slab bottom	[cm]
Slab top/bottom	Reinforcement layer on the top/bottom of the slab.	Longitudinal diameter	14 m
Longitud. diameter	Selection list of the diameter that shall be used for the	Durability Foundation	XC2
	generation of the longitudinal reinforcement. The	Durability Slab	XC2/
	software generates sufficient reinforcement of this	Creep and shrinkage Slab	
	diameter to comply with the required reinforcement. If	Distribution	
	the minimum and maximum spacing cannot be realised	Delete reinforcement	
	with the defined diameter, a greater diameter is used.	Practical construction spacing	

Properties			д
Basic parameter System Loading Design Reinforcement Soil Mechanics Parameter Output			۹ 🕲
Reinforcement			0
Verlegemaß unten	cV,u	[cm]	3.0
Concrete cover the sides	cV,s	[cm]	3.0
Verlegemaß oben	cV,o	[cm]	3.0
Laver of reinforcement Bott	om base	feml	37

3.0

3.0 +

1

1

1

1 2

 \checkmark

14 mm

Foundation XC2/X0

Slab XC2/X0

Practical construction spacing

Durability	Activating the 📝 button displays the corresponding <u>Durability</u> dialog.
	When you confirm your settings in this dialog with OK, the concrete cover,
	reinforcement layers and their diameter are checked and adjusted
	accordingly.
Creep and shrinkage	Displays the dialog to define the <u>creep factor and the shrinkage strain</u> .
Distribution	Displays the enhanced reinforcement dialog for top/bottom/slab.
Delete reinforcement	Deletes the default reinforcement.
Practical construction spacing	As a standard, the bar spacing is calculated accurately, i.e. the resulting bar
	spacing is calculated precisely to the millimetre. If the option is ticked the
	bar spacing is adjusted to 5, 6, 7, 7.5, 8, 9, 10, 12.5, 15, 17.5, 20, 22.5, 25,
	27.5 or 30 cm.

Enhanced reinforcement dialog

The enhanced reinforcement dialog can be accessed via Reinforcement the button or via → Design → Reinforcement → Distribution.

Next to the tabs for the lower and the upper reinforcement the "Slab" tab is displayed.

General

		bottom busc					
Height	Height of the foundation in the x-direction.		across	4	÷ ‡		
Longitud. diamater	As described for the Reinforcement dialog.	Steal Bar	longitudinal	1 3	-		
Generate new reinforce	ment The software calculates a	Mat 1		none			
	reinforcement that satisfies the requirements	Mat 2		none			
	as a minimum. If the minimum and	As,req./exist	/	1	7		
	maximum spacing cannot be realised with		Numb	oer / D	iame		
	the selected diameter, a greater diameter is used. When you delete the default reinforcement, the automatic generation of						
	the reinforcement is disabled and the default reinforcement remains unchanged. If it						
	turns out to be insufficient, the software displays a warning message. If no						
	reinforcement was pre-set, no warning is displayed. When generating the						
	reinforcement automatically, the software start diameter.	ts with the de	fault longitudir	nal			
Delete reinforcement	Deletes the default reinforcement and the struct	cturally requir	ed reinforceme	ent is u	used		

Reinforcement Bottom Top Slab General 0 Height 0.40 **z** [m] Longitudinal diameter [mm] 14 Generate new reinforcement Z Delete reinforcement 1 Rottom base 0 ¢Ø 14 across 4 ≑ Ø 🐴 14 longitudinal 3 none none Number / Diameter

Foundation bottom/top/slab

Bar steel X/Y	Define the number of bars in the first column and the diameter of the bars in the second column separately for the x-direction and the y-direction.
Fabric (Mat) 1/2	Selection of a reinforcement steel fabric
As, req./exist.	Informative indication

무 90

0

+

Soil Mechanics

Proof format	Define here whether a	Properties		
	 simplified proof, a exact proof or a userdefined proof should be performed. The simplified verification includes compliance with the design value of the base pressure resistance with limitation of the inclination of the load resultant. 	Basic parameter System Loading Design Reinforcement Soil Mechanics Parameter Output Allgemein		
	failure verification, a sliding safety verification	Proof format	User defined	
	and a settlement calculation.	Checks soil engineering	simplified	
Checks soil engineering	Click this symbol to open the extended dialog	EQU - Stability	exact	
æ	with graphical illustrations to bearing failure,	UPI - Unlift		
0	bearing pressure and settlements.	GEO - bearing canacity - u	simplified ve	
Bearing	You can find this function also in the toolbar with the "Bearing Pressure" symbol (note: if only	Resulting bearing pressure	simplified ver	
Tressure	the simplified verification is carried out, only the	Rearing resistance		
	"Bearing Pressure" tab is displayed).	Ausmittenbegrenzung		
User-defined proof format		Nachweisumfang		
		GEO - bearing capacity -	precise verific	
All verification options are o	offered here for individual selection.	Proof of sliding capacity		
Resulting bearing pressure	Requirement for the simplified verification: the	Ground failure check		
	Inclination of the characteristic or	Depth factor	without	
	complies with the condition HV <0.2	SLS - Serviceability - prec	ise verificatio	
Bearing resistance	The verifications for the border conditions	Calculate settlement	Settlement e	
Dearing resistance	ground failure, sliding and suitability for use	Gaping joint		
	(verification of settlements) are replaced by the	Nachweisumfang		
	use of practical data for the design value of the bearing resistance.	SLS - Serviceability - simp Limit edge stresses	olified verifica	
Eccentricity limitation	Proof according to NF P 94-261 13.3 of the eccent	tricity of the load.		
Scope of verification	In a separate dialogue, you define whether the limi according to the selected standard are to be used they are to be adapted individually (user-defined).	t states and design si for this verification or	tuations whether	
Proof of sliding capacity	Verifies the foundations against failure by sliding i loadfactor isn't vertical on the base plane.	n the base plane, if th	e	
Ground failure check	In the case of ground failure verification the shear foundation level are considered. The soil layers above the foundation level are cons horizontally soil plane and a horizontal terrain only	resistance of the soil sidered in the case of as top load.	below the a	
Depth factor	The depth coefficients take into account the favor strength in the fracture joint above the base of the failure analysis. In some European countries, this e account with coefficients > 1.	able influence of the s foundation in the bea effect can be taken in	shear aring to	
Calculate settlement	For the settlement analysis, the compression of th taken into account down to the settlement influence may be assumed in the depth at which the vertical generated by the mean settlement effective load h 20% of the effective vertical output stress of the set	e soil should be ce depth ts. Ts additional stress as an amount of oil.	without Settlement eq Stress integra from pressure from cone per adapted elast	

User defined

without Settlement equations Stress integration from pressure meter test data from cone penetration data adapted elasticity procedure

One of 5 calculation methods can be selected.

Ground failure - extended soil mechanics dialog

Calling up the dialog on "checks soil engineering *calling*" (exact/simplified verification).

Anchoring depth	Lowest depth of	10.0	×		8484 - C	5.1 - 5.2	
	foundation below	Soil Mechanics					
	the ground surface	Ground failure	Settlement Diag	rams subsidence	Bearing Pressure		
	or the top edge of	Ground failure			0		
Class		Check bearing r	esistance				
<u>Slope</u>	I ne ground level						
	with a continuous	Layer	Ground	l left (-X)			
	slope, or with a	Layer	Terrain			7	×
	broken	Layer	Anabasing death		10.00		0.00
	embankment.	Layer	Anchoring depth		[m]		0.80
Berm	The width of berm	Earth pressure	Berm		Continuous		0.00
	is the distance	Use earth press	ure	ß	[11]		10.00
	between the outer	Groundwater	Additional terrain	q beal	[] [kN/m²]		0.00
	edge of the	Ground water ex	cist Define the embedr	nent depth of the foun	ndation here		0.00
	foundation and the	Groundwater					
	beginning of the						
Additional Terrain load	Additional characteri increases the charac	stic permanent teristic punchir	area load of the area load of the	e ground failure r	node which		
Ground water							
Groundwater exists	Tick this option if gro	oundwater exist	s in the area.				
Groundwater Depth	Absolute depth of the foundation.	e groundwater i	measured from t	he bottom edge	of the		
Settlements							
Calculate settlements	As already described	above.	Soil Mechanics		N-1112		
Settlement	Settlements can be calculated		Ground failure Set	tlement Diagrams	subsidence Be	aring Pressu	ure
	with permanent loads	s or with	Settlement			6	0
	You can use combina	ation	Calculate settlement	Settlement equation	ns		-
	coefficients for varial	ble loads in	Settlement	Gk.j+Qk,1+Qk,i*u0	1		-
	characteristic load ca	ases. See	Creep settlements			C	

Earth pressure

Use earth pressure

τ

Time

characteristic load cases. See

also DIN 1054:2010 2.4.8 A

(2.8a).

10.0

0

Diagrams subsidence

Diagrams subsidence	Bearing Pressure	
	Time-settlement curve	7
ik j+Qk, 1+Qk, τψ0 🝷	Influence coefficients	

Bearing pressure

Display of the bearing pressure graphic. The input fields are explained in the chapter Soil.

Parameter

User defined

Mark this option if you want to change the safety factors and design rules that deviate from the set standards.

The corresponding input fields/editing buttons are then displayed.

Use the "Edit" button to open the respective tables for changing the values the information texts for the individual parameters are displayed in the lower window area when you click in an input field.

- Support of all 3 verification methods according to Eurocode 7, adjustable for all national annexes.
- The partial safety factors and combination equations for the geotechnical verifications can be edited.
- Since all table values can be changed, the standard setting for a specific country (e.g. India, Sweden, etc.) can be easily defined.

Properties	д
Basic parameter	0 0
÷. System	
🗄 - Loading	
🗄 - Design	
Reinforcement	
Soil Mechanics	
Parameter	
- Output	

Common Settings		0
User defined		
User defined values	->	Edit
User defined values	->	Default values
All safety factors	Edit (53)	
Combination equation	IS	0
Verification procedure	1	Edit (2)
Verification procedure	2	Edit (2)
Verification procedure	Edit (2)	
Failure of structures ar	nd compon	ents 🔕
Action/Strain	STRA	Edit (4)
Material resistance	STR M	Edit (2)
Failure of subsoil		0
Action/Strain	GEO A	Edit (10)
Material resistance	GEO M	Edit (10)
Load resistance	GEO R	Edit (6)
Stability		0
Action/Strain	EQU A	Edit (4)
Material resistance	EQU M	Edit (5)
Float up		0
Action/Strain	UPLA	Edit (4)
Material resistance	UPL M	Edit (5)

Output

Scope of the output and options

By checking the desired options, you can determine the scope of texts to be put out. You can adjust the font size and the scale of the graphics to be put out.

Output as a PDF file

On the "Document" tab, a PDF document is displayed.

See also the document Output and printing.

Properties		д
Basic parameter System Solution Design Output General Soil Enginee	ring	९ 💿
Reinforced o	concrete	~
Output		0
Output scope	Detailed	-

and a second second		
Output scope	Detailed	÷
Reinforced concrete		0
Durability		\checkmark
Crack width		\checkmark
Stresses		\checkmark
Deformations		\checkmark
Graphic reinforcement		\checkmark

Graphics Document								
	• • • • • • • • • • • • • • • • • • •	Page 1 of 7 (D)	N A - A			A AA S	tart name: 1	Page lavout
							ture puge.	
Pages Bookmarks	,	1		4.00100	511111161		11811	
Pages Bookmarks System System System System Support Foundation Member Characteristic values Station Plate Loads Support Loads Support Load case 1 - Lastfall 1 - Permane Load case 2 - Lastfall 2 - Cat. A: d Superposition Preview Checks Preview Checks		FRILO Sudge or Sic 40 To 2048 Storget Position: FDR+001 Reinforced Raft Foundation FDR+1 System Verw		1.4	5 1 6 .	Seine 1		
Gaping joint	1	Member	Concrete	Steel	Width (x)	Height (z)		
Graphics 2D G 		Wall(Mason ry) Found ation Plate Eccentricity relative to the wall avi / 4.00. To accommodate the final 11.50 M/m ² , Embed ment depth pressure rest tance dout = 350.00 k	C 25/30 C 25/30 Wallex = 0.15m.usin n is to avoid the use o of the foundation in th N/m ² .	B500A B500B ng rigiditi es in state f insulation and thi he subsoli 0.60m.1	0.30 0.60 4.00 I x reduction factor ! I ke under the base p Nithout groundwater	3.00 0.40 0.15 Phterestrain: 1.00x4 x El ilane. Stiffness value E.+ Design value of the bearing		
Graphics 3D Graphics 3D Graphics 3D Graphics 3D Graphics 3D Grack width Graphics Graphics	91218161011111	Characteristic volues Bagiliamenti dunabiliye Sanda en occostoria Cara Sanda en occostoria Cara </td <td>bot 20 20 20 21 21 21 21 21 20 20 20 20 20 20 20 20 20 20</td> <td>ton) 5/20 13 (20 13 (20) 13 (20) 13 (20) 20 (20) 20) 20 (20) 20) 20) 20 (20) 20) 20) 20 (20) 20) 20) 20 (20) 20) 20) 20) 20) 20) 20) 20) 20) 20)</td> <td></td> <td></td> <td></td> <td></td>	bot 20 20 20 21 21 21 21 21 20 20 20 20 20 20 20 20 20 20	ton) 5/20 13 (20 13 (20) 13 (20) 13 (20) 20 (20) 20) 20 (20) 20) 20) 20 (20) 20) 20) 20 (20) 20) 20) 20 (20) 20) 20) 20) 20) 20) 20) 20) 20) 20)				