

Schraubverbindungen Stahl ST9

Inhaltsverzeichnis

Anwendungsmöglichkeiten	2
Berechnungsgrundlagen	3
Systemeingabe	4
Optionen - Einstellungen	5
Materialauswahl	6
Zugstoß	6
Trägeranschluss	7
Biegesteifer Stoß	9
Stirnplattenstoß	10
Profilauswahl - Querschnitt definieren	11
Schrauben	12
Schraubenauswahl	12
Schraubenabstände	12
Schraubenbild Zugstoß	13
Schraubenbild Trägeranschluss	14
Schraubenbild Biegesteifer Stoß	15
Schraubenbild Stirnplattenstoß	16
Bemessung	17
Bemessung Zugstoß	17
Bemessung Trägeranschluss	17
Bemessung Biegesteifer Stoß	18
Bemessung Stirnplattenstoß	18
Berechnungsoptionen Stirnplattenstoß nach EN 1993	19
Ausgabe	21
Ausgabeprofil	21

Grundlegende Dokumentationen - Übersicht

Neben den einzelnen Programmhandbüchern (Manuals) finden Sie grundlegende Erläuterungen zur Bedienung der Programme auf unserer Homepage <u>www.frilo.eu</u> im Downloadbereich (Handbücher).

Tipp: Zurück - z.B. nach einem Link auf ein anderes Kapitel/Dokument – geht es im PDF mit der Tastenkombination "ALT" + "Richtungstaste links"

FAQ - Frequently asked questions

Häufig aufkommende Fragen zu unseren Programmen haben wir auf unserer Homepage im Bereich Service Support FAQ beantwortet.

Anwendungsmöglichkeiten

Mit dem Programm ST9 können Schraubverbindungen im Stahlbau bemessen werden.

Normen

DIN EN 1993 ÖNORM EN 1993 DIN 18800, Ausgabe 1990

Verbindungstypen

- Zugstoß
- Trägeranschluss
- Biegesteifer Trägerstoß
- Stirnplattenstoß

Zugstoß

Beim Zugstoß werden ausschließlich Zugkräfte, die in der Schwerlinie des Schraubenbildes angreifen, übertragen.

Die Verbindung kann ein-, zwei- oder mehrschnittig ausgeführt sein.

Die Abmaße von Zugband und Lasche werden entweder als Blech definiert oder als Standardprofil aus der Frilo-Profildatei (Walzprofile im Stahlbau) entnommen.

In letzterem Fall sind als Lasche lediglich Bleche, als Zugband aber auch I-förmige (bei einem Zugband) und Uförmige (bei einem oder zwei Zugbändern) Profile zugelassen.

Als Anschlussart ist die Scher-Lochleibungs-Verbindung realisiert. Eine gleitfeste, planmäßig vorgespannte Verbindung befindet sich in Vorbereitung.

Die Schraubenlöcher werden als gebohrt angenommen.

Trägeranschluss

Beim Trägeranschluss (Querkraftanschluss) werden ausschließlich Querkräfte in Richtung z übertragen.

Als Profiltypen für Haupt- und Nebenträger sind I-förmige Profile zugelassen, welche mittels zweier gleichoder ungleichschenkliger Winkel verbunden werden.

Die Abmaße werden als Standardprofil aus der F+L-Profildatei entnommen.

Der Nebenträger (NT) kann mit einem Versatzmaß zum Hauptträger (HT) mit Ausklinkung oben, unten bzw. beiderseitig angeordnet werden.

Als Anschlussart ist die Scher-Lochleibungs-Verbindung realisiert. Eine gleitfeste planmäßig vorgespannte Verbindung befindet sich in Vorbereitung.

Die Schraubenlöcher werden als gebohrt angenommen.

Biegesteifer Trägerstoß

Beim Biegesteifen Trägerstoß als Laschenstoß können Normal- , Querkräfte und Biegemomente übertragen werden.

Steg- und Gurtlaschen außen müssen vorgegeben werden.

Gurtlaschen innenliegend können vorgegeben werden.

Als Profiltypen sind I-förmige Profile zugelassen, deren Abmaße als Standardprofil aus der Frilo-Profildatei entnommen werden können.

Als Anschlussart ist die Scher-Lochleibungs-Verbindung realisiert. Eine gleitfeste planmäßig vorgespannte Verbindung befindet sich in Vorbereitung.

Die Schraubenlöcher werden als gebohrt angenommen.

Stirnplattenstoß

Beim Stirnplattenstoß werden zwei Träger mittels angeschweißter bündiger oder im Zugbereich überstehender Stirnplatten mit zwei oder vier vertikalen Schraubenreihen momententragfähig verbunden. Als Profiltypen sind I-förmige Profile zugelassen.

DIN EN 1993

Grundlage der Berechnung der Verbindungen sind die Verfahren der DIN EN 1993-1-8.

Im Nachweis von vertikal vierreihigen Stirnplattenstößen kommt das in den folgenden Veröffentlichungen aufgeführte Modell zur Anwendung:

- Forschungsbericht 3/2009: Entwicklung eines Bemessungsmodells für geschraubte momententragfähige Kopfplattenverbindungen mit 4 Schrauben in einer Schraubenreihe auf der Grundlage der prEN 1993-1-1:2003; Deutscher Ausschuss für Stahlbau DASt, Düsseldorf.
- WAGENKNECHT: Stahlbau-Praxis nach Eurocode 3, Band 3 <u>Komponentenmethode</u>, 2. Auflage; Beuth Verlag GmbH, Berlin, Wien, Zürich 2017.

DIN 18800

Grundlage der Berechnung nach DIN 18800 ist das in Kahlmeier, Stahlbau nach DIN 18800(11.90), Werner Verlag, aufgeführte Verfahren zur Berechnung von momententragfähigen Stirnplattenverbindungen. Es leitet sich aus den Erläuterungen zum DSTV/DASt-Ringbuch "Typisierte Verbindungen im Stahlhochbau", Stahlbau-Verlagsgesellschaft mbH, Köln 1984, her.

Die Übertragung der Schnittgrößen erfolgt dabei durch Ersatzlasten in den Gurten des Trägers. Um diesem Modell zu entsprechen, müssen die zu verbindenden Träger die Bedingung Isteg/Igesamt < 0,15 erfüllen. Es dürfen nur geringe Normalkräfte wirken. Nur hochfeste Schrauben der Festigkeitsklasse 10.9 können verwendet werden. Sie sind planmäßig vorzuspannen. Als Material ist wie im Ringbuch S235 festgelegt.

Die Trägerquerschnitte werden als doppeltsymmetrische I-Profile ausgeführt.

Berechnungsgrundlagen

Berechnungsgrundlagen zu DIN 18800 finden Sie im Dokument ST9 Berechnungsgrundlagen.pdf.

Systemeingabe

Unter dem Punkt "System" in der Hauptauswahl wählen Sie den Verbindungstyp:

- Zugstoß
- Trägeranschluss
- Biegesteifer Stoß
- Stirnplattenstoß

Nach Auswahl des Verbindungstyps werden die entsprechenden Eingabefelder/Optionen angezeigt.

Bemerkungen zur Position

Über den Button "Bemerkungen" können Sie zusätzlichen Text zur Position eingeben. Dieser Text kann bei der Ausgabe optional mit ausgegeben werden (Hauptauswahl – Ausgabeprofil – Bemerkungen).

Optionen - Einstellungen

Über den Menüpunkt Optionen >> Einstellungen - Schraubanschlüsse Stahl können Sie die Einstellungen für die Konfiguration folgender Parametern vornehmen:

ST9 Schraubanschlüs	se Stahl 02/2016 - Position: Bsp 1 Stirnplattenstol
🌓 Datei Bearbeiten	Optionen Ansicht Hilfe
D 😂 🖬 🥥 🕭	Einstellungen - ST9 Schraubanschlüsse Stah
	<u>F</u> arben
O DIN 18800	Koordinatenachsen

Zugstoß

- Versatzmaß zwischen den Zugbändern in Kraftrichtung (0,0... 5,0 mm ; Standard ist 2,0).
- Bemessung der Verbindung nach der Eingabe von n1 (Anzahl der Zugbänder) automatisch aufrufen ([✓]) oder nicht ([]).
- Für nicht unterstützte einschnittige Zugstöße kann V_{ard} optional nach Beuthkommentar zu Element 804 abgemindert werden (nur für Bemessung nach DIN 18800).

Trägeranschluss

- Versatzmaß zwischen Steg Hauptträger und Nebenträger (0,0... 20,0 mm; Standard ist 5,0).
- Bemessung der Verbindung nach der Eingabe des Nebenträgers automatisch aufrufen ([✓]) oder nicht.

Biegesteifer Stoß

- Versatzmaß zwischen den Trägern in Richtung N (0,0... 5,0mm; Standard ist 2,0).
- Vorbemessung der Laschenabmaße nach der Eingabe (bzw. Änderung) des Trägerquerschnittes automatisch durchführen ([✓]) oder nicht.
- Lascheneingabe symmetrisch (Eingaben zu den Gurtlaschen oben werden automatisch für die Gurtlaschen unten übernommen).

Stirnplattenstoß

- Bemessung der Verbindung automatisch aufrufen ([✓]) oder nicht.

Trägeranschluss und Biegesteifer Stoß

Für den Nachweis der Lochleibung im Nebenträger / Winkel kann optional der kleinste Beiwert Alpha1 von beiden Kraftrichtungen gewählt werden (DIN 18800).

Hinweis: Die Einstellungen werden positionsbezogen gespeichert.

X Optionen zum Programm Optionen Zugstoß Abstand Zugband 2,0 mm Bemessung der Verbindung ☑ bei ungestützter Verbindung Vard mit GammaM = 1,25 ansetzen Trägeranschluß Versatzmaß NT- HT 2,0 mm Bemessung der Verbindung **Biegesteifer Stoß** 2,0 mm Abstand Träger Vorbemessung der Laschen ✓ Lascheneingabe symmetrisch Stimplattenstoß Schnittgrößen auf Stabachse Bemessung der Verbindung Trägeranschluß und biegesteifer Stoß Alpha1 (Lochleibung) im Nebenträger für ungünstigste Kraftrichtung maximale Lochabstände nach DIN18800 lokale Beulgefahr besteht (Tab.7) OK Abbrechen Übernehmen Hilfe

Materialauswahl

Sie können das Material aus der Liste wählen oder die erforderlichen Werte über den Punkt "benutzerdefinierte Art" selbst eingeben (auf den 🔊 - Button klicken).

Zugstoß

Im Dialog für den Zugstoß geben Sie das System eines Zugstoßes und die Einwirkung N_d als γ_f -fache Schnittkraft ein.

Nach jeder Eingabe wird ein Plausibilitätstest über die gesamte Verbindung durchgeführt und, wenn eine Berechnung zulässig ist, der Beanspruchungsgrad der Verbindung angezeigt.

Zusätzlich bekommen Sie die erforderliche Anzahl von Schrauben je Reihe und Anschluss für Abscheren sowie für Abscheren und Lochleibung ausgewiesen.

Gleichzeitig können Sie Ihre Eingaben im rechten Grafikbereich, der nach jeder Eingabe aktualisiert wird, kontrollieren und somit effektiv auf Abweichungen reagieren.

Bei jeder Neueingabe sind die Daten des Dialoges mit einer sinnvollen Konfiguration belegt, um die Berechnung von Eta zu ermöglichen.

Einwirkung

Nd	Normalkraft in Richtung des Schwerpunktes des
	Schraubenbildes als Zug (positiv).

 $GammaM \qquad Material faktor \ \gamma_{M}.$

Zugband

t1	Dicke eines Zugbandes
h1	Höhe eines Zugbandes

n Anzahl gleicher Zugbänder (n1)

Lasche

t2	Dicke einer Lasche
h2	Höhe einer Lasche
L	Länge der Lasche in einem Anschluss
n	Anzahl gleicher Laschen (n2)

Schraubenreihen

Über die <u>Auswahlliste</u> wählen Sie die Schraubengröße sowie eventuell weitere Schraubenparameter (Festigkeit, Schraubentyp ...)

nR	Anzahl von Schraubenreihen parallel zur Zugkraft
proReihe	Anzahl von Schrauben je Reihe in einem Anschluss
dL	Lochdurchmesser

Material	Baustahl
Stahl	Baustahl Baustahl geglüht
Einwirkung	Baustahl thermo
Nd=	Baustahl wetterfest warmfester Stahl
Vzd=	Hohlprofil warm Hohlprofil warm N
	benutzerdefinierte Ar
Geometrie	

S235			
Baustahl		▼ S235	; • >>
Einwirkung			
Nd=	0,00 kN	Gamn	naM0 = 1,0
Zugband		Lasche	
Profilauswahl Zugband Profilauswahl Lasche		uswahl Lasche	
aus Abmes	ssungen t, h	aus Ab	messungen t, h
t1=	26,0 mm	t2=	13,0 mm
h1=	180,0 mm	h2=	180,0 mm
		L=	240,0 mm
n1=	1 🚔 Stk	n2=	2 🜩 Stk
M 16 - 4.6	R		
Größe	M 16 🔹	>>	
		dL =	= 17,00 mm
proReihe=	3 🌲 🛛 2	bis 6	
nR=	2 🌩 🚺	bis 4	
Bemessung	9		
	Schraub	enbild	

Trägeranschluss

Im Dialog für den Trägeranschluss geben Sie das System eines Trägeranschlusses und die Einwirkung V_{zd} als γ_r -fache Schnittkraft ein.

Nach jeder Eingabe, die Sie mit der "Return" - Taste bestätigen, wird ein Plausibilitätstest über die gesamte Verbindung durchgeführt und, wenn eine Berechnung zulässig ist, der Beanspruchungsgrad der einzelnen Anschlüsse angezeigt.

Gleichzeitig können Sie Ihre Eingaben im rechten Grafikbereich, der nach jeder Eingabe aktualisiert wird, kontrollieren und effektiv auf Abweichungen reagieren.

Im Sinne einer flüssigen Eingabe wird innerhalb des Eingabebereiches GEOMETRIE (Profilauswahl) auf die Tests und Berechnung verzichtet.

Bestätigen Sie ein Eingabefeld außerhalb dieses Bereiches, so wird ein kompletter Geometrietest mit Neuberechnung bzw. gegebener Aufforderung zur Korrektur durchgeführt.

Ausnahme:Nach Veränderung des Profils für den Haupt- oder
Nebenträger werden die Ausklinkungen e_{T1} und e_{T2}
sowie a auf die minimal notwendigen Größen unter
Berücksichtigung von U1 und der Anbindung am jeweils
anderen Träger gesetzt.

Werden für die Ausklinkungen e_{T1} und e_{T2} sowie für a Werte eingegeben, so erfolgt deren automatische Korrektur, wenn die minimal erforderlichen Werte unterschritten sind.

Bei jeder Neueingabe sind die Daten des Dialoges mit einer sinnvollen Konfiguration belegt, um die Berechnung von Eta zu ermöglichen.

\$235		
Baustahl		
S235 🔹 >>		
Einwirkung		
Vzd= 10,00 kN GammaM0 1,0		
Geometrie		
Profilauswahl Hauptträger IPE 100		
Profilauswahl Nebenträger IPE 100		
unten bündig mittig oben bündig		
u1= 0,0 mm Bohrung		
eT1= 13,0 mm 🔘 Brennschnitt		
eT2= 13,0 mm dT= 12,0 mm		
a= 23,0 mm Üw= 0,0 mm		
Profilauswahl Winkel L130x90x9		
L2= 70,0 mm 🛛 Normallage		
Bemessung		
Schraubenbild		

Einwirkung

Vzd	Querkraft in Richtung z (nach unten positiv).
GammaM	Material faktor γ_{M}

Geometrie

Auswahl der Haupt- und Nebenträger aus der Frilo-Profildatei oder Eingabe der "Abmessungen" - zulässig sind alle I-förmigen Profile.
Abstand Oberkante Nebenträger zu Oberkante Hauptträger, nach unten positiv.
Höhe der oberen Ausklinkung im Nebenträger,
Null oder mindestens Flanschdicke oben + Ausrundung oben.
Ist unter ► Optionen ► <u>Einstellungen - Schraubanschlüsse Stahl</u> für den Trägeranschluss ein Versatzmaß definiert, so wird dieses bei der Bestimmung von eT1 berücksichtigt.
Höhe der unteren Ausklinkung im Nebenträger,
Null oder mindestens Flanschdicke unten + Ausrundung unten.
- Bohrung (üblich bei Walzprofilen)
- Brennschnitt (üblich bei Schweißprofilen)
Durchmesser der Bohrung (beim Typ Brennschnitt inaktiv).
dT reduziert den nutzbaren Querschnitt im Nachweis der Ausklinkung.
Tiefe der Ausklinkung in den Nebenträger hinein.

Üw	Abstand Winkel von oberster möglicher Position bzgl. Ausrundung HT, NT und Ausklinkung im NT.
	I.d.R. ist Üw = 0, bei Üw < 0 und Eingabe von L2 wird der Winkel mittig im möglichen Positionierungsbereich angeordnet.
Winkel	<u>Auswahl eines Winkels</u> aus der Frilo-Profildatei oder Eingabe der "Abmessungen". Zulässig sind alle gleich- oder ungleichschenkligen Winkelprofile.
L2	Länge des Anschlusswinkels
Schraubenreihen für Ha	uptträger (HT) und Nebenträger (NT)

HTn	Gewählte Anzahl von Schrauben je Reihe in einem Anschluss Hauptträger - Winkel.
NT n	Gewählte Anzahl von Schrauben je Reihe im Anschluss Winkel - Nebenträger.

МА

Biegesteifer Stoß

Im Dialog für den Biegesteifen Stoß geben Sie das System aus Iförmigem Trägerquerschnitt und Laschenabmaßen sowie die Einwirkungen N_d, V_{zd} und M_{vd} als γ f-fache Schnittkräfte ein.

Nach jeder Eingabe wird ein Plausibilitätstest durchgeführt und, wenn eine Berechnung zulässig ist, der Beanspruchungsgrad angezeigt.

Gleichzeitig können Sie Ihre Eingaben im Grafikbereich (rechts) kontrollieren und effektiv auf Abweichungen reagieren.

Im Sinne einer flüssigen Eingabe wird innerhalb des Bereiches GEOMETRIE auf die Plausibilitätstests und Berechnung verzichtet (sichtbar an der Darstellung von "??.?" für den Beanspruchungsgrad Eta).

Bestätigen Sie ein Eingabefeld außerhalb dieses Bereiches, so wird ein kompletter Geometrietest mit Neuberechnung bzw. gegebener Aufforderung zur Korrektur durchgeführt.

Einwirkung				
Nd=	,00 kN	GammaM0 =	1,0]
Vzd= 41	,95 kN	Myd=	-10,00	kNm
Querschnitt			_	
	Н	E 400 A		
Laschen	Dicke t	Höhe h	Länge L [mm]
Steglasche	8.0	280.0	300.0	
	8,0	200,0	500,0	
gew n= 2	2 bis	3 nR =	3 ≑	3 bis 6
Gurtlasche ober	ı			
außen	20,0	290,0	300,0	
innen	0,0	0,0		
gew n= 3	1 bis	3 nR =	1	1 bis 3
Gurtlasche unte	n			
außen	20,0	290,0	300,0	
innen	0,0	0,0		
gew n= 3	🗘 1 bis	3 nR =	1	1 bis 3

NU	Normalki art in Richtung X (Zug positiv).
Vzd	Querkraft in Richtung z (nach unten positiv).
Myd	Moment um y (positiv, wenn im Gurt unten Zug entsteht).
GammaM	Material faktor γ_{M}

Normalkraft in Dichtung v (7ug positiv)

Querschnitt Auswahl des Hauptträgers aus der Frilo-Profildatei oder Eingabe der "Abmessungen" zulässig sind I-förmige Profile. Laschen

Steglaschen und Gurtlaschen außen müssen vorgegeben werden.

Die Eingabe von Gurtlaschen innen ist optional (keine Gurtlaschen innen: Dicke t oder Höhe h besitzt den Wert 0).

Gurtlasche außen und Gurtlasche innen haben immer die gleiche Länge.

Die maximal und minimal möglichen Höhen der Laschen werden vom Programm überprüft.

Eine Lasche muss mindestens 3mm dick sein.

Wurde unter "Optionen" die Eingabe der Laschengeometrie als "symmetrisch" aktiviert, schlägt das Programm für die Werte der Gurtlaschen unten die Eingaben aus den Gurtlaschen oben vor.

- t Dicke in mm
- h Höhe in mm
- Länge der Lasche in der gesamten Verbindung in mm L

Anzahl von Schrauben je Reihe in einem Anschluss. aew n

nR Anzahl von Schraubenreihen (parallel zur Kraft Nd).

1,1

kNm

7,0 °

-10,00

Stirnplattenstoß

Im Dialog für den Stirnplattenstoß geben Sie das System aus Trägerquerschnitt und Stirnplattenabmaßen sowie die Einwirkungen $N_{d\prime}$, V_{zd} und M_{yd} als γ f-fache Schnittkräfte ein.

Bitte beachten: Der Überstand der Stirnplatte wird vom Programm immer im Zugbereich des Trägers angeordnet.

Nach jeder Eingabe wird ein Plausibilitätstest durchgeführt und, wenn eine Berechnung zulässig ist, der Beanspruchungsgrad angezeigt.

Gleichzeitig können Sie Ihre Eingaben im Grafikbereich (rechts) kontrollieren und effektiv auf Abweichungen reagieren.

		Stirnplatte	
Nd	Kleine Normalkraft in Richtung x (Zug positiv).	dp= 25,0 mm 🔘 bündig	
Vzd	Querkraft in Richtung z (nach unten positiv).		
Myd	Moment um y (positiv, wenn im Gurt unten Zug entsteht).	üp= 26,5 mm	
GammaM	Material faktor γ_{M}	hp= 355,0 mm veireihig	
Geometrie	Auswahl des Hauptträgers aus der Frilo-	bp= 135,0 mm © vierreihig	
	Zulässig sind doppeltsymmetrische I-Profile.	Schweißnaht	
	Trägerneigung: -45° - +45°, rechts positiv im Uhrzeigersinn	aF= 4,0 mm aS= 3,0 mm	
Stimplatte		Schraube	
hündig	Dündig mit heidesitigen Überstend ü für die	Größe M 16 V >> M 16 - 10.9 HVR	
kehlnähte.			
Überstand	Überstehend im Zugbereich des Trägers mit Übers gegenüberliegenden Seite.	tand ü für die Kehlnaht auf der	
zweireihig	zwei Schraubenreihen		
vierreihig	vier Schraubenreihen		
dp	Dicke der Stirnplatte (Mindestdicke in Abhängigke eingehalten sein).	it vom Typ der Schraube muss	
üp	Überstand der Stirnplatte für die Anordnung der Ke	ehlnähte.	
	Eine Eingabe üp = 0 ist zulässig; dabei werden an o HV-Nähte angenommen.	den Außenseiten der Trägerflansche	
hp	Höhe der Stirnplatte beim Typ "bündig" ist inaktiv; hier wird hp durch die Trägerhöhe + 2 üp bestimmt.		
bp	Breite der Stirnplatte (Mindestabstände der Schrauben müssen eingehalten sein).		
aF	Dicke der Schweißnaht im Flanschbereich.		
aS	Dicke der Schweißnaht im Stegbereich.		

Einwirkung

Nd=

Vzd=

Geometrie

5,00 kN

41,95 kN

Profilauswahl Hauptträger

Trägerneigung=

GammaM =

Mvd=

IPE270

Profilauswahl - Querschnitt definieren

Klicken Sie auf den jeweiligen Button für die Profilauswahl. Das Fenster der Profilauswahl zur Eingabe/Änderung eines Querschnitts wird eingeblendet.

Profilauswahl Hauptträger

Siehe Dokument <u>Querschnittsauswahl.pdf</u>

Profilauswahl Zugband

Auswahl der Abmaße eines Zugbandes aus der Frilo-Profildatei. Die Abmaße des gewählten Profils werden in den Eingabefeldern zu t_1 und h_1 übernommen. Zugband Lasche Profilauswahl Zugband Profilauswahl Lasche

Zulässig sind:

- Bleche,
- I-förmige Profile mit nur einem Zugband,
- U-förmige Profile mit einem/zwei Zugbändern.

Bei I- und U-förmigen Profilen ergibt sich t_1 aus der Stegdicke und h_1 aus dem parallelen Stegbereich. Es wird intern mit t_1/h_1 (als Blech) weitergerechnet.

Profilauswahl Lasche

Auswahl der Abmaße einer Lasche aus der F+L-Profildatei. Die Abmaße des gewählten Profils werden in den Eingabefeldern zu t_2 und h_2 übernommen.

Zulässig sind Bleche als Flach- und Breitflachstahl.

Schrauben

Schraubenauswahl

Im Dialog zur Schraubenauswahl legen Sie die zu verwendende Schraubenart fest.

Klicken Sie hierzu auf den ⊵ - Button.

M 16 - 4.6 R M 16 🔻 >>

Es werden die Schraubengrößen M12 bis M36 mit den Festigkeitsklassen 4.6 bis 10.9 angeboten.

Die Schraube kann als Rohe Schraube oder als Passschraube gewählt werden.

Rohe Schrauben können mit einem Lochleibungsspiel von 0,3 bis 2,0 mm,

Passschrauben mit einem Lochleibungsspiel von 0,0 bis 0,3 mm verwendet werden.

Es kann gewählt werden, ob alle Fugen einer Verbindung im Schraubenschaft oder im Schraubengewinde liegen.

Nach Eingabe der Schraubenart wird der verwendete Lochdurchmesser auf den Regellochdurchmesser der jeweiligen Schraubengröße gesetzt.

Dieser kann jedoch in dem zulässigen Intervall innerhalb des Dialoges zum Schraubenbild verändert werden.

Der Regellochdurchmesser beträgt bei M16 z.B. 17 mm für Rohe Schrauben (Lochleibungsspiel 1,0 mm), 17 mm für Passschrauben (Lochleibungsspiel 0,0 mm).

Die Auswahl planmäßig vorgespannter und gleitfest verbundener Schrauben bleibt einer späteren Programmversion vorenthalten.

Hinweis:	Die charakteristischen Werte von Streckgrenze fybk und Zugfestigkeit fubk lassen sich leicht aus der Festigkeitsklasse entnehmen:
	f _{ybk} = (Ziffer vor Punkt) (Ziffer nach Punkt) 10 N/mm ²
	f _{ubk} = (Ziffer vor Punkt) 100 N/mm ²
	z.B. $F-5.6 f_{ybk} = 300 N/mm^2$
	$f_{ubk} = 500 \text{ N/mm}^2$

Schraubenabstände

Nach jeder Änderung eines Eingabewertes und vor der damit verbundenen Neuberechnung des Systems führt das Programm eine automatische Optimierung der Schraubenabstände durch. Die Eingabezustände sind damit eindeutig definiert (Optimierung im Sinne des geringsten Beanspruchungsgrades aus der Verbindung).

Eine direkte Vorgabe der Schraubenabstände ist durch den Aufruf des Dialoges "Schraubenbild" möglich. Im Anschluss an eine direkte Vorgabe wird "Eta" mit den eingestellten Schraubenabständen ermittelt.

Schweißnahtdicken werden bei der Ermittlung der Schraubenabstände nicht berücksichtigt.

Tipp: Eigene Schraubenabstände immer zuletzt eingeben !

Größe		Festigkeit	
M 12		4.6	
M 16		5.6	
M 20	_	8.8	
M 22		10.9	4
M 24			
M 27		O Dobe Sc	braube
M 30		O Rone Su	aube
M 36	Ŧ	Paßschragen Paßen Paßschragen Paßen Paß	aube
 Gewind planmä 	le in Scher Big vorge	r fuge spannt	
gleitfes	t verbund	len	
	-		

Schraubenbild Zugstoß

Im Dialog "Schraubenbild Zugstoß" (Button Schraubenbild) machen Sie Angaben zur Anzahl der Schraubenreihen parallel zur Zugkraft, zu den Schraubenabständen und dem zu verwendenden Lochdurchmesser.

Es wird die maximal mögliche Anzahl von Schraubenreihen senkrecht zur Zugkraft in Abhängigkeit der minimal zulässigen Schraubenabstände angezeigt.

Nach jeder Eingabe wird ein Plausibilitätstest folgender Art durchgeführt:

- Die minimal zulässigen Schraubenabstände müssen eingehalten werden.

e1 >= 1,2 dL

p1 >= 2,2 dL

e2 >= 1,2 dL

p2 >= 2,4 dL

- Die Summe der Schraubenabstände senkrecht zur Zugkraft muss mit der Zugband- bzw. Laschenhöhe identisch sein.

2 e_2 + (Anzahl Schraubenreihen - 1) p_2 = h

Hinweis: Bei Eingabe von e_2 (p_2) wird diese Bedingung geprüft und im abweichenden Falle der Wert von p_2 (e_2) automatisch angepasst.

Bei nachträglicher Veränderung der Höhe h wird die entstandene Differenz anteilmäßig in den Abständen e_2 und p_2 korrigiert.

- Die Summe der Schraubenabstände in Richtung der Zugkraft muss mit der Länge der Lasche in einem Anschluss L identisch sein.

2 e_1 + (Anzahl Schrauben je Reihe - 1) p1 = L

Programm geprüft werden.

Diese Bedingung wird nur nach erfolgreichem Verlassen des Dialoges zum Schraubenbild getestet und die Länge L gegebenenfalls automatisch angepasst.

Das Lochleibungsspiel bei Eingabe von d_L darf sich für Rohe Schrauben im Bereich von 0,3 bis 2,0 mm, für Passschrauben im Bereich von 0,0 bis 0,3 mm befinden.

Als Eingabewerte werden abgefragt:

nproReihe	Anzahl der Schraubenreihen parallel zur Zugkraft
e1	Randabstand in Kraftrichtung
р1	Lochabstand in Kraftrichtung (Innenabstand der Schrauben)
nR	Anzahl der Schraubenreihen senkrecht zur Kraftrichtung
e2	Randabstand senkrecht zur Kraftrichtung
p2	Lochabstand senkrecht zur Kraftrichtung (Innenabstand der Schrauben)
dL	Lochdurchmesser, abhängig von der gewählten Schraubenart und -größe
Hinweis:	Zwischen den Schraubenabständen p_1 und e_1 bzw. e_2 und p_2 bestehen Abhängigkeiten, die vom

Schraubenbild Trägeranschluss

In diesem Dialog machen Sie Angaben zur Anzahl der Schraubenreihen parallel zur Kraftrichtung, zu den Schraubenabständen und dem zu verwendenden Lochdurchmesser.

Es wird die maximal mögliche Anzahl von Schraubenreihen parallel zur Querkraft in Abhängigkeit der minimal zulässigen Schraubenabstände für den Anschluss Hauptträger - Winkel und Winkel- Nebenträger angezeigt.

Beachten Sie, dass bei Verwendung von DIN-Winkelprofilen aus der <u>Frilo-Profildatei</u> die Anzahl und Abstände e2/p2 der Löcher sowie der maximal verwendbare Schraubendurchmesser je Schenkel festgelegt sind.

Diese Werte können nicht verändert werden. Wollen Sie für diese Winkel andere Werte verwenden, so geben Sie den Winkel über seine Abmessungen ein.

Nach jeder Eingabe wird ein Plausibilitätstest folgender Art durchgeführt:

- Die minimal zulässigen Schraubenabstände müssen eingehalten werden.
 - $e1 >= 1,2 d_L$
 - $p1 >= 2,2 d_L$
 - $e2 >= 1,2 d_L$
 - $p2 >= 2,4 d_L$
- Die Summe der Schraubenabstände senkrecht zur Kraft muss mit der entsprechenden Winkelbreite identisch sein.

 e^2 + (Anzahl Schraubenreihen - 1) $p^2 + e^2_{Rest} = B$

- mit e2 Randabstand vom Scheitel des Winkels
 - B Breite des entsprechenden Schenkels
 - $e_{2_{Rest}}$ Randabstand vom freien Ende des Schenkels mit $e_{2} \ge 1,2$ d_L
- Die Summe der Schraubenabstände in Richtung der Kraft muss mit der Länge der Winkel in einem Anschluss L₂ identisch sein.

2 e_1 + (Anzahl Schrauben je Reihe - 1) $p1 = L_2$

Hinweis:

Bei Eingabe von e1 (p1) wird diese Bedingung geprüft und im abweichenden Falle der Wert von p1 (e1) automatisch angepasst.

Bei nachträglicher Veränderung der Länge L_2 wird die entstandene Differenz anteilmäßig in den Abständen e1 und p1 korrigiert.

- Das Lochleibungsspiel bei Eingabe von d_L darf sich für Rohe Schrauben im Bereich von 0,3 bis 2,0 mm, für Passschrauben im Bereich von 0,0 bis 0,3 mm befinden.

Als Eingabewerte werden je Anschluss Hauptträger - Winkel und Winkel - Nebenträger abgefragt:

- nR Anzahl der Schrauben<u>reihen</u> im Anschluss Winkel Nebenträger
- n gewählte Anzahl der Schrauben je Reihe im Anschluss Winkel Nebenträger
- e1 Randabstand in Kraftrichtung
- p1 Lochabstand in Kraftrichtung
- e2 Randabstand senkrecht zur Kraftrichtung ausgehend vom Scheitel des Winkels
- p2 Lochabstand senkrecht zur Kraftrichtung
- dL Lochdurchmesser, abhängig von der gewählten Schraubenart und -größe

Schraubenbild Biegesteifer Stoß

In diesem Dialog machen Sie Angaben zur Anzahl der Schraubenreihen parallel zur Kraftrichtung N, zu den Schraubenabständen und dem zu verwendenden Lochdurchmesser dL.

Es wird die maximal mögliche Anzahl von Schraubenreihen in Abhängigkeit der minimal zulässigen Schraubenabstände angezeigt.

Nach jeder Eingabe wird ein Plausibilitätstest folgender Art durchgeführt:

- die minimal zulässigen Schraubenabstände müssen eingehalten werden

Randabstand

 $e_1 >= 1,2 d_L$

 $p_1 >= 2,2$ d_L

 $e_2 >= 1,2 d_L$

- $p_2 >= 2,4 d_L$
- die Summe der Schraubenabstände senkrecht zur Kraft muss mit der entsprechenden Laschenhöhe h identisch sein

 e_2 + (Anzahl Schraubenreihen - 1) p_2 + $e_{2,Rest}$ = h

mit e₂

-2	
$e_{2,Rest} = e_2$	bei Steglaschen
$e_{2,Rest} >= 1,2 d_L$	bei Gurtlaschen

- die Summe der Schraubenabstände in Richtung der Kraft muss mit der Länge der Laschen in einem Anschluss L_2 identisch sein

2 e_1 + (Anzahl Schrauben je Reihe - 1) $P_1 = L_2$

Hinweis: Bei Eingabe von e_1 (p_1) wird diese Bedingung geprüft und im abweichenden Falle der Wert von p_1 (e_1) automatisch angepasst.

Bei nachträglicher Veränderung der Länge L_2 wird die entstandene Differenz anteilmäßig in den Abständen e_1 und p_1 korrigiert.

Ist nur eine Schraube je Reihe vorhanden, so muss für e_2 die halbe Länge L_2 gesetzt werden.

- das Lochleibungsspiel bei Eingabe von d_L darf sich für rohe Schrauben im Bereich von 0,3 bis 2,0 mm, für Passschrauben im Bereich von 0,0 bis 0,3 mm befinden

Eingabewerte je Laschenart

nR Anzahl der Schraubenreihen parallel zur Kraftrichtung N (bei den Gurtlaschen bezieht sich die Eingabe auf eine Gurthälfte des Trägers)

gew n gewählte Anzahl Schrauben je Reihe in den Steglaschen

- e1 Randabstand in Kraftrichtung N
- p1 Lochabstand in Kraftrichtung N
- e2 Randabstand senkrecht zur Kraftrichtung N (bei den Gurtlaschen bezieht sich die Eingabe auf eine Gurthälfte des Trägers, Randabstand von Laschenaußenkante)
- p2 Lochabstand senkrecht zur Kraftrichtung (bei den Gurtlaschen bezieht sich die Eingabe auf eine Gurthälfte des Trägers)
- dL Lochdurchmesser, abhängig von der gewählten Schraubenart und -größe

Schraubenbild Stirnplattenstoß

In diesem Dialog machen Sie Angaben zu den Schraubenabständen und dem zu verwendenden Lochdurchmesser dL.

Nach jeder Eingabe wird ein Plausibilitätstest folgender Art durchgeführt:

- Die minimal zulässigen Schraubenabstände müssen eingehalten werden.
- Die Summe der Schraubenabstände muss mit dem entsprechenden Plattenabmaß identisch sein.
- Das Lochleibungsspiel bei Eingabe von d_L darf sich für rohe Schrauben im Bereich von 0,3 bis 2,0 mm, für Passschrauben im Bereich von 0,0 bis 0,3 mm befinden.

Abstände in Richtung des Trägersteges

Auswahl zwischen "a" bzw. "e" (siehe entprechende Grafik im Dialog)

- Abstand Schraube im Überstand zu Außenkante Träger
 Ist das Eingabefeld inaktiv, so ermittelt sich a₁ aus:
 (a₂ Flanschdicke) gerundet auf 5mm
- a2 Abstand Schraube innen zu UK Träger
- a3 Abstand Schraube innen zu OK Träger
- e1 Randabstand im Überstand von AK Stirnplatte
- e2 Lochabstand am Trägergurt unten von UK Stirnplatte
- e3 Lochabstand in der Mitte des Trägers
- e4 Lochabstand am Trägergurt oben, bei bündiger Stirnplatte von OK gemessen

Abstände in Richtung der Trägergurte

- w1 Mittelabstand (im Träger)
- w2 Innenabstand Schraube bei vierreihiger Stirnplatte
- w3 Randabstand (außen) Schraube
- dL Lochdurchmesser, abhängig von der gewählten Schraubenart und -größe

Bemessung

Bemessung Zugstoß

Wurde über "Optionen" die automatische Bemessung zum Zugstoß aktiviert, so erfolgt diese nach der Eingabe des Zugbandes (Anzahl n1) innerhalb des Dialoges zur Systemeingabe.

Der Dialog ist analog der Schraubenauswahl aufgebaut. Zusätzlich können die Optimierungsart gewählt und das vorgeschlagene Schraubenbild verändert werden.

Jede Eingabe hat die Neuberechnung der aktuellen Konstellation mit Angabe des Beanspruchungsgrades der Verbindung und aus Zugspannung, sowie der Anzahl benötigter Schrauben zur Folge.

Als Bemessungsregeln gelten:

 $\begin{array}{ll} t_{2,ges} & = t1,ges \\ n2 & = n1+1 \\ L & = e_{1,bem} + (gew.n-1) & e_{bem} + e_{1,bem} \\ (gew.n & n_{Reihe})_{bem} > = erf. Anzahl Schrauben aus Abscheren \\ \end{array}$

Für das Kriterium minimale Abmaße gilt:

 $e_{1,bem} = max.zul.e_1$

e_{bem} = min.zul.e

Für das Kriterium minimale Schraubenanzahl gilt:

e_{1,bem} = max.zul.e₁ e_{hem} = max.zul.e

Durch Kombination von Schraubenreihen und gewählter Anzahl Schrauben je Reihe wird die minimal notwendige Anzahl Schauben je Anschluss gesucht.

Hinweis: Die Verbindung kann durch Veränderung der vorgeschlagenen Werte angepasst werden. Hierbei erfolgt eine automatische Optimierung der Schraubenabstände (außer bei direkter Vorgabe im Dialog Schraubenbild) → siehe hierzu <u>Eingabewerte Zugstoß</u>.

Bemessung Trägeranschluss

Wurde über "<u>Optionen</u>" die automatische Bemessung zum Trägeranschluss aktiviert, so erfolgt diese nach Eingabe von Querkraft, Haupt- und Nebenträger innerhalb des Dialoges zur Systemeingabe.

Es werden 21 übliche und in der Praxis bewährte Winkelprofile bemessen und die Ergebnisse in einer Tabelle übersichtlich dargestellt.

Eta_V: Beanspruchungsgrad der Verbindung

Eta_eT: Beanspruchungsgrad der Ausklinkung

Die Verbindungen sind jeweils deckengleich und mit den erforderlichen Werten für e_{T1} , e_{T2} und a (aufgerundet auf ganze 10er - Stelle) ausgeführt.

Der Wert Üw wird immer als 0,0 angenommen. Die Schraubenabstände richten sich jedoch nach den gebräuchlichen, nicht nach den optimierten Werten.

Der Auswahlbalken wird automatisch auf das Winkelprofil gesetzt, welches im Auslastungsgrad von allen berechneten Profilen am nächsten zu 1,0 liegt.

Gibt es kein solches, so können Sie z.B. das am "nächsten" liegende Profil wählen und die Verbindung durch Änderung von Winkellänge oder Schraubenabständen optimieren bzw. anpassen.

Bemessung Biegesteifer Stoß

Wurde über "<u>Optionen</u>" die automatische Vorbemessung der Laschen aktiviert, so erfolgt diese nach der Eingabe (Änderung) des Trägerquerschnittes innerhalb der Systemeingabe.

Dabei werden die erforderliche Dicke und Höhe für die Steg- und Gurtlaschen außen anhand des gewählten Trägerquerschnittes ermittelt. Gurtlaschen innenliegend werden nicht angeordnet.

Die Querschnittsflächen der Laschen entsprechen den zugehörigen Querschnittsflächen des Trägers:

 $t_{lasche} = t_{träger} / n_{lasche}$ aufgerundet auf die nächste Standarddicke für Bleche

 $h_{lasche} = A_{träger} / t_{lasche}$ auf ganzes Maß aufgerundet

Bemessung Stirnplattenstoß

Wurde über "<u>Optionen"</u> die automatische Bemessung aktiviert, so wird diese nach der Eingabe (Änderung) des Trägerquerschnittes innerhalb der Systemeingabe durchgeführt.

Die Bemessung erfolgt für die Profiltypen:

IPE, IPEa, IPEo, IPEv, IPEr, HEA, HEAA, HEB, HEM.

Diese müssen zuvor aus der <u>F+L-Profildatei</u> gewählt werden.

Es werden übliche und in der Praxis bewährte Stirnplattenstöße entsprechend des gewählten Trägers bemessen und die Ergebnisse in einer Tabelle übersichtlich dargestellt.

Eta_V: Beanspruchungsgrad der Schrauben

Eta_SP: Beanspruchungsgrad der Stirnplatte

Eta_SW: Beanspruchungsgrad der Schweißnaht

Bei der Bemessung nach DIN EN 1993 werden die Grenzschnittkräfte des Anschlusses nach dem Komponentenverfahren berechnet und den Einwirkungen gegenübergestellt.

Berechnungsoptionen Stirnplattenstoß nach EN 1993

Um die Berechnungsoptionen beim Komponentenverfahren aufzurufen, klicken Sie auf "Einstellungen" innerhalb der Systemeingabe.

Normalkraft

N-M Interaktion	Berücksichtigung von Normalkräften > 0,05 N _{pl.Rd} nach Gleichung 6.24 EN 1993-1-8
NRd-Zug Überstand	Schrauben im Überstand werden bei der Ermittlung der Grenznormalkraft N _{Rd} vernachlässigt

Zug

Abstützkräfte pauschal hiermit wird unterstellt, dass sich bei der geschraubten Stirnplattenverbindung immer Abstützkräfte einstellen (es erfolgt keine Prüfung vom Programm !, es gilt also immer Lb <= Lb* Tabelle 6.2)

N	ormalkraft
V	M-N-Interaktion großer Normalkräfte
V	NRd-Zug : Überstand vernachlässigen
Zu	g
	Abstützkräfte pauschal
	FtRd Stummel alternatives Verfahren
	Faktor Zugbereich f = 0,50
Q	Jerkraft
V	Vz nur bei zugfreien Schrauben ansetzen
	Begrenzung VRd auf 50% des Trägers
Sc	hweißnaht Stirnplatte
	kein Nachweis : Ausbildung konstruktiv
1	Nachweis mit den Teilschnittgrößen des Komponentenmodells
	Schweißnaht voll tragfähig ausbilden
	Nachweis mit IAW (Querschnittswerte Schweißnahtbild)
Sy	stem
	Berechnung Elastisch-Elastisch

FtRd Stummel	Das Anwenden des alternativen Verfahrens (Verfahren 2) für den Nachweis der Versagensart 1 in den äquivalenten T-Stummeln erschließt durch einen genaueren Ansatz der Schrauben kleinere Tragreserven
Faktor Zugbereich f	Dieser Faktor bezogen auf die Anschlusshöhe ergibt den Bereich, in welchem die Schrauben auf Zug wirken. Vorgabewert ist f = 0,5. <i>Einfluss:</i> Näher zur Druckzone liegende Schrauben können bei der Berechnung der Momententragfähigkeit vernachlässigt werden. Sie wirken dann mit ihrer vollen Grenzabscherkraft, so dass sich ggf. eine höhere Querkrafttragfähigkeit der Verbindung ergibt. Die Unterbewertung der Momententragfähigkeit ist im Allgemeinen gering und wird für Verbindungen, in denen mindestens 50% der Schrauben auf Zug wirken und sich die vernachlässigten Schrauben im Bereich des 0,4 -fachen Abstandes der äußersten gezogenen Schraube zum Druckpunkt befinden, mit 15% abgeschätzt.
Querkraft	
Vz	Die Querkraft wird ausschließlich durch Schrauben übertragen, die keine Zugkraft übernehmen. Siehe auch Faktor f für Zugbereich.
Begrenzung Vrd	Die Tragfähigkeit der Querkraft wird auf 50% der Schubtragfähigkeit des Riegels begrenzt. Dies geht in die Berechnung der Auslastung aus Va _{Rd} ein.
Schweißnähte	
kein Nachweis	Die Schweißnähte der Stirnplatte werden konstruktiv entsprechend der Profilabmessungen ausgebildet und nicht explizit nachgewiesen.
Teilschnittgrößen	Die Schweißnähte der Stirnplatte werden mit den jeweiligen Teilschnittgrößen des Komponentenmodells nachgewiesen.
volltragfähig	Die Schweißnähte der Stirnplatte werden so nachgewiesen, dass sie das Grenzmoment und die Grenzquerkraft des Anschlusses übertragen können. Schweißnähte sind nur begrenzt duktil und sollten daher so dimensioniert werden, dass sie nicht bemessungsrelevant sind, d.h. eine der anderen Komponenten zuerst versagt.
Nachweis aus IAW	Die Schweißnähte der Stirnplatte werden über die Statik des Gesamtschweißnahtbildes nachgewiesen, anderenfalls mit den jeweiligen Teilschnittgrößen.
System	

...Elastisch-Elastisch Die Tragwerksberechnung soll nur Elastisch-Elastisch erfolgen, maßgeblich ist Ma_{,Rd,el} – zur Klassifizierung wird nur die Steifigkeit herangezogen.

Ausgabe

Über den Button "Bemerkungen" können Sie zusätzlichen Text zur Position eingeben. Dieser Text kann bei der Ausgabe optional mit ausgegeben werden (Ausgabeprofil – Bemerkungen).

Ausgabe der Systemdaten, Ergebnisse und Grafik auf Bildschirm oder Drucker. Über den Punkt Ausgabe starten Sie den Ausdruck bzw. die Anzeige auf Bildschirm.

Ausgabeprofil	Bei einigen Programmen können Sie auch den Umfang der Ausgabe (Ausgabeprofil) festlegen/einschränken.
Bildschirm	Anzeige der Werte in einem Textfenster
Drucken	Starten der Ausgabe auf den Drucker
Word	Das Textverarbeitungsprogramm MS-Word wird aufgerufen und die Ausgabe eingefügt, sofern dieses Programm auf Ihrem Rechner installiert ist. In Word können Sie dann die Ausgabe bei Bedarf nach Ihren Wünschen bearbeiten.

Über Datei – Seitenansicht können Sie die Ausgabe in der Druckvorschau anzeigen und drucken sowie als PDF-Datei speichern – siehe <u>Ausgabe und Drucken</u>.

Ausgabeprofil

Hier legen Sie den Umfang der Ausgabe auf den Drucker fest. Markieren Sie hierzu die gewünschten Ausgabeoptionen.

Die Inhalte zu den Nachweisen werden nur berücksichtigt, sofern Sie auch berechnet worden sind.