

ST15 – Fußpunkt Flansch

Inhaltsverzeichnis

Anwendungsmöglichkeiten	2
Berechnungsgrundlagen	3
Einstellungen zur Berechnung	5
Systemeingabe	6
Stahl	6
Profilauswahl	6
Rohrflansch	7
Flansch	9
Fußpunkt	10
Rippen	13
Ringsteife	15
Mantelblech	15
Zuganker (Fußpunkt)	16
Überlagerungen für den Fußpunkt	16
Betriebsfestigkeitsnachweis nach DIN 4133	17
Schrauben (Rohrflansch/Flansch)	17
Schnittgrößen für die Rohrflanschverbindung	17
Ausgabe	18
Grafische Darstellung	18
Literatur	19

Grundlegende Dokumentationen - Übersicht

Neben den einzelnen Programmhandbüchern (Manuals) finden Sie grundlegende Erläuterungen zur Bedienung der Programme auf unserer Homepage <u>www.frilo.eu</u> im Downloadbereich (Handbücher).

Tipp: Zurück - z.B. nach einem Link auf ein anderes Kapitel/Dokument – geht es im PDF mit der Tastenkombination "ALT" + "Richtungstaste links"

FAQ - Frequently asked questions

Anwendungsmöglichkeiten

Das Programm ST15 berechnet Rohrflanschverbindungen und Fußpunkte von kreisringförmigen Bauteilen, sowie Einzel-Flanschverbindungen.

Die Bemessung der Flanschverbindung erfolgt nach [1]Petersen Stahlbau 2.Auflage, S. 506ff, bzw. S. 952ff. Die Berechnung erfolgt durch die Auswertung der maximalen Zugspannung am Rohr bzw. Zugblech.

Geometrie Querschnitte

Beim Rohrflansch- und Fußpunktnachweis werden ausschließlich Rundrohre verwendet.

Sicherheitskonzept

Der Teilsicherheitsbeiwert γ_M für Stahl kann geändert werden, die Schnittgrößen bzw. Spannungen (Flansch/Rohrflansch) bzw. Überlagerungen beim Fußpunkt werden γ_F -fach eingegeben.

Nach DIN 4133 Abschnitt 7.1.1. Tragsicherheit dürfen die elastischen Grenzschnittgrößen um 10% erhöht werden – zur Berücksichtigung der erhöhten Tragfähigkeit bei Plastizierung.

Eine Ausnutzung plastischer Tragfähigkeiten ist nicht zulässig.

Im Programm werden an dieser Stelle die zulässigen Spannungen um 10% erhöht – die statischen Werte (Widerstandsmomente) bleiben unverändert in der Ausgabe.

Betriebsfestigkeitsnachweis nach DIN 4133

Wird der <u>Nachweis als Betriebsfestigkeitsnachweis</u> geführt, werden die aus den Beanspruchungen ermittelten Spannungen als Spannungswechsel betrachtet und mit den zulässigen Werten für die Betriebsfestigkeit verglichen.

$\max\Delta\sigma\!\leq\!\Delta\sigma_{\text{R}}$

Diese Werte können vorgegeben werden als Bezugsgröße der Betriebsfestigkeit

 $\Delta \sigma_A$ des Konstruktionsdetails entsprechend der Kerbfallklasse nach Tabelle 1 DIN 4133 für Schrauben, Betonstahl, Fußpunkt, Flansch, Rippen, Rohr und Ringsteife.

Der Faktor n zur Ermittlung der Betriebsfestigkeit $\Delta \sigma_R$ ergibt sich aus den Spannungswechselzahlen und Randbedingungen nach DIN 4133 Anhang B Punkt 3. und ist vorzugeben.

$$\Delta \sigma_{R} = \Delta \sigma_{A} \cdot n$$

GI. (B.3) DIN 4133

Bei Blechdicken t > 25 mm kann $\Delta \sigma_R$ nach Gl. (B.4) in DIN 4133 abgemindert werden.

Berechnungsgrundlagen

1. Bemessung Fußpunkt

1.1 Ankerbemessung

Die Bemessung der Anker erfolgt als nicht vorgespannt, nach den folgenden Methoden.

1.1.1 Iteration nach Petersen

Berechnung kreisförmiger und kreisringförmiger Fußplatten mit Schraubenankern nach [1] S.960 unter Ansatz des Ersatzschraubenquerschnitts, der sich aus dem Verhältnis der EModuli des Ankerstahls und des Betons ergibt.

Ergebnis der iterativen Berechnung ist eine Randdruck - und Randzugspannung.

Aus der Randzugspannung wird die maximale Zugkraft des Ankers ermittelt.

1.1.2 Einfache Formel von Petersen

Ermittlung der Ankerkraft nach [1] Gl.55 S.957 bzw. S.963 (Beispiel)

r = Radius des Schraubenkranzes

1.1.3 Stahlbau HandbuchErmittlung der Ankerkraft nach [2] Gl.39.9-19)r = Radius des Rohres

1.1.4 Bemessung analog Stahlbetonbemessung

Die Bemessung der erforderlichen Stahlfläche der Anker erfolgt analog der Stahlbetonbemessung.

Die Anker werden in diesem Fall nicht mit Druck beansprucht.

1.2 Aus der Ankerbemessung resultierende Fußplattenbemessung

Zur Bemessung der Fußplatte wird das Kragmoment, das sich aus dem Hebelarm des Ankerabstands und der maximalen Ankerkraft ermittelt, gegen das Widerstandsmoment der Fußplatte verglichen.

Ebenso wird ein 1 cm breiter Druckstreifen der Fußplatte mit der Länge des Überstands der Fußplatte über das Rohr mit der ermittelten Betondruckspannung belastet.

Beim Vorhandensein von Rippen erfolgt die Berechnung analog als zwischen den Rippen eingespannte Platte.

Ergibt der gewählte Ankernachweis als Ergebnis nur die Zugkraft am Anker, muss der Nachweis der Fußplatte auf Druck gesondert geführt werden.

Die Berechnung der Fußplatte erfolgt auf diese einfache Weise, ohne Berücksichtigung von Krempelmomenten oder den Steifigkeitsbeziehungen zwischen Rohrmantel und Fußplatte - das würde eine FEM-Berechnung erfordern, die uns zur Zeit für dieses Modell noch nicht zur Verfügung steht.

1.3 Rippenbernessung

Die Bemessung der Rippen erfolgt nach [3] S.310 als zweiseitige bzw. mit Ringsteife als dreiseitige Rippe. Die Belastung ergibt sich aus der Rohrspannung und dem Abstand der Rippen.

1.4 Ringsteife

Die Ringsteife wird nach [3] (36.9_1 bis _ 17) S.1091 ff berechnet. Das Moment im Mantelblech und die Störspannung in Umfangsrichtung für den Fall, dass Rippen, aber keine Ringsteife vorhanden sind, werden ausgegeben.

2. Flanschbemessung

Die Flanschbemessung erfolgt nach [1] S.953ff Laschenstöße - Flanschstöße, bzw. S.506ff Stirnplatten- und Flanschverbindungen.

Literatur

- [1] Petersen Stahlbau 2.verbesserte Auflage
- [2] Stahlbau Handbuch Band 2, zweite, neu bearbeitete Auflage, Stahlbau-Verlagsgesellschaft mbH.Köln 1985
- [3] Kahlmeyer

Einstellungen zur Berechnung

Menüpunkt Optionen Einstellungen Option

Folgende Optionen können festgelegt werden:

- Flanschgeometrie nach DIN 4133 Fall a prüfen.
- Ausgabeoptionen für die Nachweise.
- Zulässige Grenzschnittgrößen um 10% erhöhen: Die Grenzspannung wird nach DIN 4133 7.1.1 im Hinblick auf die vorhandenen plastischen Reserven um 10% erhöht.
- Die Einheiten für die Druckausgabe festlegen.

Option	Betriebsfestigkeitsnachweis Erweitert
Last	übernahme
	Lasten mit Referenz beim Programmstart aktualisieren
Flan	sch/Rohrflansch
\checkmark	Flanschgeometrie nach DIN4133 Fall a prüfen
	Ausgabe elasto/statischer Nachweis
	Ausgabe plasto/statischer Nachweis
	Erhöhung der zulässigen Grenzschnittgrößen um 10%
Einh	eiten für die Druckausgabe
•	cm , kN/cm² O mm , N/mm²
	OK Abbrechen

Menüpunkt Optionen > Einstellungen > Betriebsfestigkeitsnachweis

Eingabe von $\Delta \sigma_A$ für den Betriebsfestigkeitsnachweis für die aufgeführten Bauteile (Schrauben ...).

 $\Delta \sigma_A$ ist die Bezugsgröße der Betriebsfestigkeit entsprechend der Kerbfallklasse nach Tabelle B.1 in DIN 4133 (1991).

Die Betriebsfestigkeit $\Delta \sigma_R$ wird hierbei unter Verwendung der durch den Anwender vorzugebenden Bezugsgröße $\Delta \sigma_A$ berechnet.

Ebenso wird der Faktor *n* zur Ermittlung von $\Delta \sigma_R$ vom Anwender vorgegeben:

 $\Delta \sigma_{R} = \Delta \sigma_{A} \cdot n$ GI. (B.3) DIN 4133

Bei Blechdicken *t* > 25 mm kann $\Delta \sigma_R$ nach Gl. (B.4) in DIN 4133 abgemindert werden.

Systemeingabe

Stahl

Auswahl Stahl × Klicken Sie auf den Button "Stahl". Durch Auswahl eines Stahls (Stahl DIN 18800 und Stahlsorten nach DIN 4133 Tabelle 1,2,3) aus den Listen werden die zugehörigen Stahl S 355 ~ Materialkennwerte automatisch gesetzt. Die Vorgaben können aber mit eigenen Werten überschrieben werden. O Allgemeine Baustähle Für allgemeine Baustähle werden die zulässigen O Warmfeste Stähle Schweißnahtspannungen mit Alfa w ermittelt. O Nichtrostende Stähle Betriebstemperatur 20,0 Eingabewerte °C Betriebstemperatur E-Modul, f_{yk} und Gamma werden in Bezeichnung Abhängigkeit der Betriebstemperatur S 355 vom Programm ermittelt. Bezeichnung Kurzbezeichnung des gewählten Kennwerte Streckarenze 360 N/mm Materials. Kann ebenfalls überschrieben werden. E-Modul = 210000 N/mm Streckgrenze fyk Charakteristischer Wert der 0,80 Alfa w = Streckgrenze. E-Modul Charakteristischer Wert des E-Moduls. OK Abbrechen Beiwert für die Alfa w Grenzschweißnahtspannung nach DIN 18800

Profilauswahl

Die Rohrprofile können entweder aus der FRILO-Profildatei entnommen oder über die Abmessungen eingegeben werden.

Allgemeine Bedienungshinweise zur FRILO-Profilauswahl finden Sie im Dokument <u>Ouerschnittsauswahl.pdf</u>

Rohrflansch

Eingaben

Die Definition der Verbindung erfolgt durch die <u>Stahlauswahl</u>, die Vorgabe von γ_M (siehe <u>Schnittgrößen</u>), die Auswahl der Rohrprofile (<u>Profilauswahl</u>) und die Definition des Flansches über seine Abmessungen.

Der Flansch kann entweder außen oder innen liegen. Er wird mit einer minimalen Länge, der Dicke, dem vertikalen Überstand am Rohr sowie den Schweißnahtdicken am oberen bzw. unteren Rohrquerschnitt definiert.

Die <u>Schrauben</u> sind umlaufend gleichmäßig verteilt angeordnet, der Abstand von der Flanschaußenkante gilt bis zur Mitte des Durchmessers der Schraube.

Es besteht die Möglichkeit, mehrere Schnittgrößen- bzw. Spannungskombinationen zu verwalten (<u>Schnittgrößen für Rohrflanschverbindung</u>).

Test der Mindestgeometrie:

Die Mindestgeometrie des Flansches nach DIN 4133 S.22 Fall a kann nachgewiesen werden:

- maximaler Abstand vom Rohrmantel

- dazugehöriger Mindestabstand von der Flanschaußenkante
- minimale Flanschdicke
- minimale Rohrdicke
- maximaler Schraubendurchmesser
- minimaler Schraubendurchmesser
- maximaler Schraubenabstand

Berechnung

Die Bemessung der Flanschverbindung erfolgt nach Petersen Stahlbau 2. Auflage, S. 506ff, bzw. S. 952ff. Die Berechnung erfolgt durch die Auswertung der maximalen Zugspannung am Rohr – anhand des Schraubenabstands wird die Einflussbreite *c* pro Schraube ermittelt. Die maximale Zugspannung am Rohr wird entweder vorgegeben oder aus den Schnittgrößen ermittelt.

Für die vorhandene Zugkraft *Z* werden daraus die Kräfte in der Zugfeder = Schraube FvS und in der Druckfeder FvD ermittelt. Die vorhandene Zugkraft ist die maximale Zugspannung im Rohr dividiert durch die Rohrdicke und die Einflussbreite *c*, die sich aus dem Schraubenabstand berechnet – umgerechnet auf den Schwerpunkt des Schraubenkranzes.

Bei außenliegendem Flansch wird der Radius des Schraubenkranzes *rs* gleich dem Radius der Mantelmittellinie gesetzt.

Flanschfeder:

Die Berechnung erfolgt nach Petersen [1] S. 508 9.7.4.3, Formeln für die Schrauben - und Flanschfedern S. 510 Ermittelte Werte:

- CS Feder Schraube
- CD1 DruckFeder
- CD2 DruckFeder
- CD DruckFeder
- C GesamtFeder
- p Verteilungszahl
- q Verteilungszahl
- K Drehfederkonstante Mantelblech aus *rm* oder mit *Ls*

(Beim Flansch kann die Drehfederkonstante *K* auch über die Länge *Is* des Zugbands bestimmt werden, oder – wie beim Rohrflansch – über den mittleren Rohrdurchmesser).

Flanschkraftverteilung:

Berechnung erfolgt nach Petersen [1] Kraftverteilung am Flansch Gl 71 ... 73 S. 508, Bsp. S. 955

- Ermittlung von α -, β -, γ -, δ -, ϵ -Faktor und der Kraft *F* an der Schraube.

Elasto-statischer Nachweis:

Es wird das elasto-statische Modell Petersen Stahlbau S. 510. gerechnet und die Momente am Flansch und am Rohr (Zugblech) ermittelt.

Unter Berücksichtigung der Vorspannung wird nachgewiesen, bei welcher Zugkraft Zkrit die Verbindung klafft.

Plasto-statischer Nachweis:

Es wird das plasto-statische Modell Petersen Stahlbau S. 511. gerechnet und die 3 Versagensmodi für den Flansch untersucht:

- Versagensmodus A Schraubenbruch
- Versagensmodus B Fließgelenk Schnitt 3 Mantelrohr
- Versagensmodus C Fließgelenk Schnitt 2 Flansch

Falls die Option "zulässige Grenzschnittgrößen um 10% erhöhen" eingeschaltet ist, werden für den elastostatischen Nachweis die zulässigen Widerstandsgrößen um 10% erhöht, der plasto-statische Nachweis entfällt.

Flansch

Eingaben

Die Definition der Verbindung erfolgt durch die <u>Stahlauswahl</u>, die Vorgabe von γ_M (siehe <u>Schnittgrößen</u>) und die Definition des Flansches und des Zugbandes über ihre Abmessungen.

Der Flansch wird mit einer Länge, der Dicke, dem vertikalen Überstand am Zugband sowie der Schweißnahtdicke definiert. Die Einflussbreite *c* wird vorgegeben.

Der Abstand der Schraube gilt von der Flanschaußenkante bis zur Mitte des Durchmessers der Schraube.

Es besteht die Möglichkeit, zwischen der Eingabe einer Zugkraft bzw. der Spannung im Zugband die Beanspruchung zu wählen.

Die Drehfederkonstante *K* des Anschlussblechs kann entweder über den mittleren Rohrdurchmesser (wie beim Rohrflansch) oder über die Länge *Is* des Zugbands bestimmt werden.

Zur Berechnung siehe Kapitel Rohrflansch

Fußpunkt

Eingaben

Die Definition des Fußpunkts erfolgt durch die <u>Stahlauswahl</u> ,die Vorgabe von γ_M (siehe <u>Schnittgrößen</u>), die Auswahl des Betons und des Rohrprofils (<u>Profilauswahl</u>) und die Definition der Fußplatte über ihre Abmessungen.

Der Fußpunkt kann mit quadratischer, kreisförmiger oder kreisringförmiger Fußplatte ausgebildet werden.

Die Schweißnaht zwischen Rohr und Fußplatte wird nachgewiesen, wenn keine Rippen angeordnet sind.

Als Zuganker können Betonstabstahl, Hammerschrauben oder Schrauben gewählt werden.

Die Anker sind umlaufend gleichmäßig verteilt angeordnet, der Abstand von der Fußplattenaußenkante gilt bis zur Mitte des Durchmessers des Ankers. Die Eingabe der Anzahl der Anker erfolgt bei quadratischen Fußplatten pro Seite, ansonsten ist die Gesamtanzahl einzugeben.

Es besteht die Möglichkeit, mehrere Überlagerungen zu verwalten (Überlagerung für den Fußpunkt).

<u>Rippen</u> sind als zweiseitige bzw. – bei Anordnung eines Druckrings – dreiseitige Rippen gleichmäßig über den Rohrquerschnitt verteilt. Es wird die Anzahl der Rippen für das gesamte Rohr angegeben.

Die Belastung der Rippe wird anhand der Spannungsverteilung im Rohr pro Segment(Lasteinzugsbereich) der Rippe ermittelt.

Bemessung der Zuganker an der Fußplatte

Die Bemessung der Zuganker an der Fußplatte kann nach 4 Methoden erfolgen:

1. Berechnung analog einer Stahlbetonbemessung, wobei dem Stahl keine Druckspannungen zugeordnet werden.

Die Bemessung der Anker erfolgt mit der FRILO-Stahlbetonbemessungsbibliothek FLBemBn:

Die Bemessung der erforderlichen Stahlfläche (der Zuganker) erfolgt analog der Stahlbetonbemessung, wobei dem Stahl keine Druckspannungen zugesprochen werden.

Es wird mit einer gleichmäßig über den Umfang verteilten Bewehrung gerechnet für die kreisförmige, kreisringförmige bzw. quadratische Fußplatte. Für die quadratische Fußplatte wird ausschließlich diese Berechnungsmethode angewandt.

Für Betonstahl als Zuganker werden die Werte entsprechend der Stahlbetonbemessungsbibliothek ermittelt, bei Verwendung von anderen Zugankern (Schrauben) wird dem Stahl eine maximale Dehnung von 5 promille zugeordnet und der entsprechende f_{yk} -Wert der Festigkeit.

(Gamma Stahl = 1,0 da γ bereits in f_{yk} enthalten ist - Betonstahl Gamma = 1,15)

Ergebnisse dieser Berechnung:

- die erforderliche Stahlfläche It. Bemessung insgesamt umlaufend,
- die maximale Spannung am Stahl,
- die maximale Betonkantenpressung,
- die Fläche der Druckkraft,
- die Gesamtzugkraft,
- die maximale Zugkraft pro Stab und
- die gleichförmige Pressung am Beton.
- 2. Iteration nach Petersen Stahl im Hochbau [1]

Die Berechnung erfolgt nach Petersen Stahlbau S. 960 Abschnitt 23.2.10.3, nicht vorgespannte Verankerung.

Dabei wird nach Tafel 23.3 Fall b mit dem Ersatzschraubenquerschnitt *t*, der sich aus den unterschiedlichen E-Moduli von Stahl und Beton ergibt, gerechnet.

Bemessungsfall ist entsprechend dieser Tafel Fall 1 bis 3, wobei Fall 2 (Nulllinie innerhalb Fußplattenöffnung und Fall 3 Nulllinie im Kreisring) nur bei kreisringförmigen Fußplatten auftritt.

Fall 4 ist der Sonderfall N=0.

- Ergebnisse dieser Berechnung:
- der Bemessungsfall der Iteration,
- die maximale Schraubenzugkraft aus Iteration,
- der Winkel der Nulllinienlage,
- die maximale Betonpressung,
- die maximale Zugspannung,
- der Ersatzschraubenquerschnitt und
- der Radius der Nulllinienlage.
- 3. Einfache Formel nach Petersen Stahl im Hochbau [1]

Die maximale Ankerzugkraft ermittelt sich aus der Formel nach Petersen Gl. 55

 $F_s = N/n + 2/n \cdot M/r_s.$

r_s = Radius des Schraubenkranzes

4. Berechnung nach Stahlbau Handbuch [2] S. 1091ff

Die maximale Ankerzugkraft ermittelt sich aus der Formel nach Petersen Gl. 55

 $F_s = N/n + 2/n \cdot M/r_m$.

r_m = mittlerer Rohrradius

Werden keine Rippen angeordnet, wird das Flanschmoment nach Bild a Formel (36.7-9) ermittelt.

Berechnung der Fußplatte

Wenn keine Rippen angeordnet sind, erfolgt der Nachweis der Fußplatte als Kragarm, der am Rohrquerschnitt eingespannt ist.

Die Belastung ergibt sich einmal aus der gleichmäßigen Druckspannung unter der Fußplatte und der maximalen Zugkraft eines Ankers, die entsprechend dem Ankerabstand über die Einflussbreite am Rohr verteilt wird.

Sind Rippen angeordnet, werden die vorgenannten Belastungen auf eine beidseitig in den Rippen eingespannte Platte angesetzt.

Wenn keine Momentenbelastung auftritt, wird die Fußplatte als Kreisplatte mit der gleichmäßigen Belastung infolge Normalkraft durch Fußplattenfläche bemessen.

Je nach Geometrie des Fußpunkts wird die Fußplattenbemessung durchgeführt:

mit Rippen:

Beanspruchung "außen" als zweiseitig zwischen den Rippen eingespannte Platte. Die Breite der Platte entspricht der Rippendicke abzüglich der Rippenaussparung *c* und die Länge der Platte ist der Abstand der Rippen in der Schraubenachse.

Moment infolge Zug an der Schraube ist	M = Z / Breite · Länge / 8
Moment infolge Druckspannung	$M = q \cdot Breite \cdot Länge / 12$

ohne Rippen:

Platte "außen" wird als Kragarm gerechnet.

Moment infolge Zug an der Schraube ist M = Z \cdot a / e

a = Abstand der Schraube vom Rohrmantel

e = Abstand der Schrauben bezogen auf den mittleren Rohrdurchmesser

Moment infolge Druckspannung M = $q \cdot Kragarm^2 / 2$

Belastung nur durch Druckkraft:

Kreisringplatte: Prüfen des Kragmoments nach "innen", wenn der Kragarm nach innen größer ist.

Kein Kreisring: Eine vom Rohr umschlossene Kreisplatte wird berechnet.

Bei Rippen bzw. großem Kragarmmoment wird die Kreisplatte eingespannt, ansonsten gelenkig gelagert gerechnet.

Rückgabewerte Plattenberechnung:

- Wp Widerstandsmoment plastisch
- We Widerstandsmoment elastisch
- Tp Plattendicke plastisch
- Te Plattendicke elastisch
- Moment inf. Druck (Druckflächenkraft für Plattenbemessung)
- Moment inf. Zug (Zugkraft an der Schraube)
- Feldbreite der zweiseitig eingespannten Platte bei Rippen
- Kreisring Kragarm nach innen
- Mf maximales Feldmoment bei nur Druck
- Ms maximales Stützmoment bei nur Druck
- Maximales Moment

Rippen

Rippen sind gleichmäßig über den Rohrquerschnitt verteilt – die Anzahl entspricht den Zugankern bzw. der Hälfte der Anzahl der Zuganker des Rohres.

Die Belastung der Rippe wird anhand der Spannungsverteilung im Rohr pro Segment (Lasteinzugsbereich) der Rippe ermittelt.

Die Bemessung der Rippen erfolgt nach Kahlmeyer, Stahlbau nach DIN 18800 (11.9), Abschnitt 8, S. 308.

Die maximal mögliche Rippenbreite ergibt sich demnach aus der Geometrie des einleitenden Rohres und der Fußplatte, bzw. der Breite des Druckrings. Die Rippen werden als zweiseitige Rippen, bzw. – bei Vorhandensein einer Ringsteife – als dreiseitige Rippen bemessen.

F1 ist die Last pro Rippe (siehe auch Petersen S. 550)

Ergebnisse

- Erforderliche Dicke
- Spannung in der Rippe
- Maximale Schweißnahtspannung

Zweiseitige Rippe:

- F2	Kraft
- e1	Hebelarm
- e2	Hebelarm
- Aw1	zugehörige Schweißnahtflächen
- Aw2	zugehörige. Schweißnahtflächen
- SigmaVw1	Schweißnahtspannung Vergleichsspannung
- SigmaVw2	Schweißnahtspannung Vergleichsspannung

Dreiseitige Rippe:

- F2	Kraft
- e1	Hebelarm
- e2	Hebelarm
- Aw1	zugehörige Schweißnahtflächen
- Aw2	zugehörige Schweißnahtflächen
- Aw3	zugehörige Schweißnahtflächen
- SigmaVw1	Schweißnahtspannung Vergleichsspannung
- Tauw2	Schweißnahtspannung
- Tauw3	Schweißnahtspannung

Kraftverteilung an den Rippen (Beispiel zweiseitig)

- h Rippenhöhe
- b Rippenbreite
- c Aussparung der Rippe am Rohr bzw. an der Fußplatte

Für die Einleitung der Kräfte in die Rippen werden folgende Annahmen getroffen:

- Gleichmäßige Verteilung der einzuleitenden Vertikalkraft *F1* auf die Länge (*b c*).
- Der Angriffspunkt der Vertikalkraft hat daher den Abstand *e1* = *c*) / 2 vom Rohr.;
- Das dadurch hervorgerufene Moment $M = F1 \cdot e1$ wird durch die entgegengesetzt wirkende Kraft F2 aufgehoben.
- Dreieckige Pressungsverteilung im Bereich (h c) mit Hebelarm $e^2 = (2 \cdot h + c) / 3$

Ringsteife

Der Nachweis der Ringsteife erfolgt nach Stahlbau Handbuch S.1091ff. Es werden die Kräfte für den Symmetrie- und den Antimetriefall an der Rippe und an der Ringsteife ermittelt. Für das sich daraus ergebende Biegemoment erfolgt der Nachweis der Ringsteife.

Ergebnisse

- Kraft an der Rippe längs zum Rohrmantel Symmetriefall S. 1091 (36.9-3)
- Hilfsgröße k Symmetriefall S. 1091 (36.9-5)
- Kraft an der Rippe längs zum Rohrmantel Antimetriefall S. 1092 (36.9-7)
- Hilfsgröße k Antimetriefall S. 1092 (36.9-9)
- Kraft an der Rippe im Druckring Symmetriefall nur NS.1091 (36.9-4)
- Biegemoment in der oberen Ringsteife Symmetriefall S.1092 (36.9-10)
- Kraft an der Rippe im Druckring Antimetriefall S.1092 (36.9-8)
- Biegemoment in der oberen Ringsteife Antimetriefall S.1092 (36.9-10)
- Widerstandsmoment Ringsteife
- Spannung an der Ringsteife

Mantelblech

Nachweis nach Stahlbau Handbuch 2 ohne Ringsteife nur mit Rippen

Es wird die mittragende Breite des Mantelblechs und die Störspannung in Umfangsrichtung des Rohrmantels (S.1092 (36.9-16)) ermittelt.

Ergebnisse

- Kraft an der Rippe längs zum Rohrmantel Symmetriefall S. 1091 (36.9-3)
- Hilfsgröße k Symmetriefall S. 1091 (36.9-5)
- Kraft an der Rippe längs zum Rohrmantel Antimetriefall S. 1092 (36.9-7)
- Hilfsgröße k Antimetriefall S. 1092 (36.9-9)
- Hilfswert b* S. 1092 (36.9-9)
- Hilfswert ζ (Zeta) S. 1092 (36.9-12)
- Hilfswert η (Eta) S. 1092 (36.9-13)
- Mittragende Breite Mantelblech BS. 1092 (36.9-15)
- Moment am Rohrmantel Symmetriefall S. 1092 (36.9-16)
- Moment am Rohrmantel Antimetriefall S. 1092 (36.9-16)
- Störspannung in Umfangsrichtung S. 1092 (36.9-17)

Zuganker (Fußpunkt)

In diesem Fenster erfolgt die Auswahl der Zuganker an der Fußplatte. Es kann zwischen Betonstabstahl, Hammerschrauben, Schrauben und freier Eingabe der Größe und Festigkeit der Anker gewählt werden.

	stahl		
d2 0	^	853 500	
ds 8		BST 420	
ds 10	~		
) Hammers	chrauben		
M-24		法部	~
M 30			
M 36	~		~
) Schrauber	i i		
M 12		4.6	
M 16		5.6	
M 20	~	8.8	~
L 8/1 / J		Linn.	
A COLOR	be		
offele Einga			26.0 mm
d=	80.0	mn As= 50	
d=	80,0	mn As= 50	
d= [Modul=	80,0 r 210000,0	nn As= 50 N/mm	

Überlagerungen für den Fußpunkt

In diesem Fenster können mehrere Überlagerungen für den Fußpunkt verwaltet werden.

Mit Aktivierung der Option BFK wird die Eingabe für den Betriebsfestigkeitsnachweis festgelegt (<u>Betriebsfestigkeitsnachweis nach DIN 4133)</u>, d.h. die sich aus den Werten *Md* und *Nd* ergebenden Spannungen werden mit der Betriebsfestigkeit verglichen.

×								
Name	Nd[kN]=Fx	Vyd[kN]=Fy	Vzd[kN]=Fz	Myd[kNm]=	Mzd[kNm]=	Mxd[kNm]=	BFK	Ord
1.Überlageru	600,00	0,00	0,00	6000,00	0,00	0,00		
	6	-			8			
	6			-	8	÷		
					-			
	Name 1.Überlageru	Name Nd[kN]=Fx 1.Überlageru 600,00	Name Nd[kN]=Fx Vyd[kN]=Fy 1.Überlageru 600,00 0,00	Name Nd[kN]=Fx Vyd[kN]=Fy Vzd[kN]=Fz 1.Überlageru 600,00 0,00 0,00 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Name Nd[kN]=Fx Vyd[kN]=Fy Vzd[kN]=Fz Myd[kNm]= 1.Überlageru 600,00 0,00 0,00 6000,00 1.Überlageru 1. 1. 1. 1.	Name Nd[kN]=Fx Vyd[kN]=Fy Vzd[kN]=Fz Myd[kNm]= Mzd[kNm]= 1.Überlageru 600,00 0,00 0,00 6000,00 0,00 1.Überlageru 600,00 0,00 0,00 0,00 0,00 0,00 1.Überlageru 600,00 0,00 0,00 0,00 6000,00 0,00 1.Überlageru 600,00 0,00 0,00 6000,00 0,00 0,00 1.Überlageru 600,00 0,00 0,00 0,00 0,00 0,00 1.Überlageru 600,00 0,00 0,00 0,00 0,00 0,00 1.Überlageru 1. 1. 1. 1. 1. 1.	Name Nd[kN]=Fx Vyd[kN]=Fy Vzd[kN]=Fz Myd[kNm]= Mzd[kNm]= Mxd[kNm]= 1.Überlageru 600,00 0,00 0,00 6000,00 0	Name Nd[kN]=Fx Vyd[kN]=Fy Vzd[kN]=Fz Myd[kNm]= Mzd[kNm]= Mxd[kNm]= BFK 1.Uberlageru 600,00 0,00 0,00 6000,00 0,00 0 <td< td=""></td<>

Betriebsfestigkeitsnachweis nach DIN 4133

Eingabe von Optionen für den Betriebsfestigkeitsnachweis über ► Optionen ► Einstellungen ► Betriebsfestigkeitsnachweis.

Siehe auch Kapitel Einstellungen zur Berechnung: Betriebsfestigkeitsnachweis nach DIN 4133

Option	Betriebsfestigkeitsnac	hweis	Erweitert			
	Eingabe von	∆σ _A für	folgende N	Vachweise		
	Schrauben =		36,00	N/mm ²		
	Betonstahl =		36,00	N/mm ²		
	Fußpunkt =		71,00	N/mm² N/mm²		
	Flansch =		45,00			
	Rippen =	56,00		N/mm² N/mm²		
	Rohr =					
	Druckring =		71,00	N/mm ²		
F	aktor zur Ermittlung vo Abminderung der Betri	n ∆σ _R iebsfest	= iigkeit bei t:	0.73	3 33(B.4)	
		(ОК	Abbrechen	Oben	
h			2.1530M		3	

Schrauben (Rohrflansch/Flansch)

In diesem Fenster erfolgt die Auswahl der Schrauben für den Flansch.

Es können die Größe, Festigkeit und die Vorspannkraft der Schraube gewählt werden.

Weitere Hinweise finden Sie in den Kapiteln Flansch / Rohrflansch.

Die Schrauben müssen für die Flanschverbindung vorgespannt sein, um eine klaffende Fuge zu vermeiden.

Schnittgrößen für die Rohrflanschverbindung

Sc	Schnittgrößen für Rohrflanschverbindung											×			
€ → ×															
	Nr	Name	Nd,u[kN]	Md,u[kNm]	Vd,u[kN]	Mxd,u[kNm]	Sigd,u[N/mm ²]	Nd,o[kN]	Md,o[kNm]	Vd,o[kN]	Mxd,o[kNm]	Sigd,o[N/mm ²]	BFK	Sigm	^
1	1	1.Schnittgrößen	10,00	20,00	0,00	0,00	26,67	10,00	20,00	0,00	0,00	26,67			
2	2	2.Schnittgrößen	20,00	30,00	0,00	0,00	39,49	20,00	30,00	0,00	0,00	39,49			
3															

In diesem Fenster können mehrere <u>Schnittgrößen</u>- bzw. Spannungskombinationen für den Rohrflansch verwaltet werden.

Wird die Option für Sigma (Sig) aktiviert, sind Eingaben für die Spannung möglich, ansonsten sind die Eingabefelder für die Schnittgrößen aktiv.

Mit Aktivierung der Option BFK wird die Eingabe für den Betriebsfestigkeitsnachweis festgelegt (<u>Betriebsfestigkeitsnachweis nach DIN 4133</u>).

Ausgabe

Ausgabe von Systemdaten, Ergebnissen und Grafik auf Bildschirm oder Drucker.

Über den Punkt Ausgabe in der Hauptauswahl starten Sie den Ausdruck bzw. die Anzeige auf Bildschirm. Bei einigen Programmen müssen Sie die Ausgabefunktionen über das Register "Ausgabe" einblenden.

BildschirmAnzeige der Werte in einem TextfensterDruckerStarten der Ausgabe auf den DruckerWordDas Textverarbeitungsprogramm MS-Word wird aufgerufen und die Ausgabe eingefügt,
sofern dieses Programm auf Ihrem Rechner installiert ist. In Word können Sie dann die
Ausgabe bei Bedarf nach Ihren Wünschen bearbeiten.

Bildschirmausgabe (Textfenster)

Folgende Möglichkeiten gibt es, das Textfenster aufzurufen:

- über das Textfenster-Symbol
- über den Menüpunkt: Fenster \rightarrow Bildschirmausgabe

In der Textausgabe am Bildschirm werden, unabhängig vom Ausgabeprofil der Hauptauswahl, immer alle vorhandenen Daten angezeigt (System, Belastung, Ergebnisse).

Drucken der Bildschirmausgabe

Wenn das Textfenster aktiv ist (z.B. durch Anklicken mit der Maus), dann kann der Inhalt durch Klick auf das Drucker-Symbol in der oberen Symbolleiste zum Drucker geschickt werden. Die Druckfunktion erscheint auch, wenn Sie mit der rechten Maustaste ins Textfenster klicken.

Grafische Darstellung

Das System kann im Grafikfenster dargestellt werden.

Zum Aufruf einer Grafikdarstellung stehen folgende Möglichkeiten zur Verfügung:

Aufruf über das Grafikfenster-Symbol.

Die dargestellte Grafik lässt sich jederzeit über das Drucker-Symbol in der oberen Symbolleiste auf Drucker ausgeben.

Visualisierung über eine 3D-Grafik-Darstellung.

Literatur

- [1] Petersen Stahlbau 2., verbesserte Auflage
- [2] Stahlbau Handbuch Band 2 zweite, neu bearbeitete Auflage 1985
- [3] Kahlmeyer Stahlbau nach DIN 18800(11.9)