

Stahlstütze STS+

Inhaltsverzeichnis

Anwendungsmöglichkeiten	2
Berechnungsgrundlagen	3
Bemessungswerte der Schnittgrößen	3
Nachweisführung	3
Nachweis in den Grenzzuständen der Tragfähigkeit	3
Nachweis in den Grenzzuständen der Gebrauchstauglichkeit	3
Grundparameter	4
System	5
Belastung	7
Standardlasten / Assistent	7
Vertikallast	7
Kopflasten horizontal	8
Kopfmomente um y	8
Windlasten	9
Anprallasten	9
Stablasten	10
Angehängte Pendelstützen	13
Bemerkungen	13
Bemessung und Nachweisführung	14
Nachweise im Grenzzustand der Tragfähigkeit	14
Grenzzustände	14
Nachweise im Grenzzustand der Gebrauchstauglichkeit	14
Lastweiterleitung	14
Ausgabe	16
Häufig gestellte Fragen	17

Grundlegende Dokumentationen - Übersicht

Neben den einzelnen Programmhandbüchern (Manuals) finden Sie grundlegende Erläuterungen zur Bedienung der Programme auf unserer Homepage <u>www.frilo.eu</u> im Downloadbereich (Handbücher).

Tipp: Zurück - z.B. nach einem Link auf ein anderes Kapitel/Dokument – geht es im PDF mit der Tastenkombination "ALT" + "Richtungstaste links"

FAQ - Frequently asked questions

Häufig aufkommende Fragen zu unseren Programmen haben wir auf unserer Homepage im Bereich Service Support FAQ beantwortet.

Anwendungsmöglichkeiten

Bemessungsnormen

Das Programm STS+ führt die Tragsicherheitsnachweise nach dem Ersatzstabverfahren für planmäßig (ex-) zentrisch beanspruchte Stützen aus Profilstahl nach EC 3 (EN 1993-1-1) unter Berücksichtigung der Regelungen der Nationalen Anhänge.

- DIN EN 1993-1-1:2010/ 2015
- ÖNORM EN 1993-1-1:2007/2017
- BS EN 1993-1-1:2008
- PN EN 1993-1-1:2010

Systeme

Es werden folgende statischen Systeme unterstützt:

- Kragstütze
- Pendelstütze
- unten eingespannte und oben gelenkig gelagerte Stütze
- unten und oben eingespannte Stütze
- Allgemeine Stütze (die Lagerbedingungen können in den Hauptachsenrichtungen unterschiedlich sein)

Lasten

Das Stützensystem kann durch Vertikal- und Horizontallasten sowie Momente beansprucht werden. Eine Lastdefinition, die zu planmäßiger Torsion führt, ist nicht möglich. Darüber hinaus können angehängte Pendelstützen bei Kragstützen vorgegeben werden. Das Eigengewicht der Stütze wird optional angesetzt.

Berechnung

Entsprechend der definierten Einwirkungen werden von STS+ automatisch die entsprechenden Lastfälle und Lastfallkombinationen gebildet und die notwendigen Nachweise geführt, wobei die für jeden Grenzzustand maßgebende Lastfallkombination bestimmt wird.

Schnittstellen zu weiterführenden Programmen

Die charakteristischen Auflagerkräfte oder Bemessungwerte der Auflagerkräfte können an die Programme

- FD+ Einzelfundament
- FDB+ Blockfundament
- ST3 Stahlstütze Fußplatte
- ST6 Fußpunkt Stahlstützen

weitergeleitet werden.

Entsprechen die realen Lagerbedingungen nicht dem definierten Standard oder führen

Belastungssituationen zu planmäßiger Torsion, ist eine Berechnung mit STS+ nicht möglich. Hierfür steht ggf. das Programm <u>BTII</u>+ zur Verfügung.

Ist das Programm BTII+ (Biegetorsionstheorie II. Ordnung) lizenziert, kann das System aus STS+ an BTII+ durch Datenexport übergeben werden. In BTII+ ist eine Berechnung komplexerer Systeme auch nach Biegetorsionstheorie Theorie II. Ordnung möglich.

Siehe auch Kapitel Lastweiterleitung.

Berechnungsgrundlagen

Die Berechnungsgrundlage für das Programm STS+ ist die Normenreihe des Eurocode 3. In der aktuellen Version sind die Nationalen Anhänge für Österreich und Großbritannien implementiert.

Bemessungswerte der Schnittgrößen

Die Berechnung der Schnittkräfte für die jeweils maßgebende Lastkombination erfogt nach Theorie I. Ordnung.

Alle notwendigen Kombinationen der Einwirkungen werden entsprechend des Sicherheitskonzeptes des Eurocodes 0 vom Programm automatisch berücksichtigt.

Maßgebende Schnittkraftkombinationen im Grenzzustand der Tragfähigkeit werden für den Nachweis der Querschnittstragfähigkeit und den Bauteilnachweis (Stabillitätsnachweis) berechnet.

Die den Gebrauchstauglichkeitsnachweisen zugrunde liegende Bemessungssituation ist vom Anwender vorzugeben.

Zusätzlich werden Schnittkraftkombinationen für die Bemessungswerte der Auflagerkräfte ermittelt.

Nachweisführung

Nachweis in den Grenzzuständen der Tragfähigkeit

Den Tragfähigkeitsnachweisen werden die Schnittgrößen nach Theorie I. Ordnung zugrunde gelegt.

Der Bauteilnachweis (Stabilitätsnachweis) erfolgt auf Grundlage des Ersatzstabverfahrens, dem eine numerische Ermittlung der jeweiligen Verzweigungslastfaktoren vorausgeht.

Nachweis in den Grenzzuständen der Gebrauchstauglichkeit

Der <u>Nachweis der Gebrauchstauglichkeit</u> bezieht sich ausschließlich auf die Ermittlung der Verschiebungen, getrennt in die Hauptachsen und die Resultierenden.

Die Verformungen werden ebenfalls mit Schnittgrößen nach Theorie I. Ordnung ermittelt. Es ist zu beachten, dass Verformungen nach Theorie II. Ordnung zum Teil erheblich größer sein können. Sind die Verformungen von besonderer Wichtigkeit, ist ggf. ein erweiterter Nachweis nach Theorie II. Ordnung durchzuführen. Hierzu steht dem Anwender das Programm *BTII+* zur Verfügung, sofern dieses lizenziert worden ist.

Lastweiterleitung

Siehe Anwendungsmöglichkeiten > <u>Schnittstellen</u>.

Die Auflagerkräfte des Stützensystems können in die Programme Einzelfundament FD+, Blockfundament FDB+, Stahlstütze - Fußplatte ST3 und Fußpunkt eingespannter Stahlstützen ST6 weitergeleitet werden. Auch hier ist zu beachten, dass die Reaktionskräfte nach Theorie I. Ordnung ermittelt werden.

Grundparameter

Norm und Sicherheitskonzept

Bemessungsnorm Auswahl des anzuwendenden Nationale		Eigenschaften 🛛		
	Anhangs für den Tragsicherheitsnachweis nach EC3.	Grundparameter System	٩	0
ψ2 für Kranlasten	Legt den Kombinationsbeiwert ψ2 für Kranlasten fest (= Verhältnis von ständigem Anteil zu Gesamtkranlast).	 Bemessung Ausgabe 		
Schnee außergewöhnlich	Bei markierter Option werden zusätzlich	Norm und Sicherheitskonzept		۲
	zu den gewöhnlichen	Bemessungsnorm	EN 1993:2015	+
	Bemessungssituationen die	ψ2 für Kranlasten	C	0,90
	Schneelasten auch als außergewöhnliche	Schnee außergewöhnlich		\checkmark
	Einwirkung angesetzt. Der Lastfaktor für	Lastfaktor für Schnee (A)	2,30	0
	die außergewöhnlichen Schneelasten	ψ2 = 0,5 für Schnee (AE)		
	kann dabei frei vorgegeben oder	Standort in Windzone 3 oder 4		
	automatisch vom Programm ermittelt	gleiches γG für ständige Lasten		\checkmark
	werden.	Tragsicherheit		۲
ψ2 = 0,5 für Schnee	Bei markierter Option wird in der Bemessungssituation Erdbeben (AE) der Kombinationsbeiwert ψ2 für die Einwirkung Schnee auf den Wert 0,5 angehoben. (Siehe Einführungserlasse der Bundesländer, z.B. Baden- Württemberg)	Querschnittsbemessung	plastisch	-
		Ersatzstabnachweis nach	6.3.3 - Anhang B	+
		Gebrauchstauglichkeit		0
		Bemessungssituation	charakteristisch	-
		Nachweis der Absolutverformung		\checkmark
		absolute Grenzverformung	[cm]	5,0
Standart Windzona 2/4		Nachweis der Relativverformung		\checkmark
Stanuort Windzone 3/4	der Gehäudestandert in Windzene 3 oder	relative Grenzverformung	[leff/]	300
	4 befindet. In diesem Fall braucht die Einwin Begleiteinwirkung zur Leiteinwirkung "Wind	rkung "Schnee" nicht als " angesetzt werden.		
gleiches γG für ständige La	sten Markieren Sie diese Option, wenn al zusammen mit dem gleichen Teilsicherheit angesetzt werden sollen. Anderenfalls werd Lastfälle untereinander mit γG,sup und γG,ir	lle ständigen Lasten bzw. sbeiwert (γG,sup oder γG,i den alle ständigen Lasten nf kombiniert.	Lastfälle nf) bzw.	
Tragsicherheit				
Ouerschnittsbemessung	Die Querschnittsbemessung erfolgt option	al		

Querschnittsbemessung	Die Querschnittsbemessung erfolgt optional - elastisch oder - plastisch nach Abschnitt 6.2
Ersatzstabnachweis	Der Ersatzstabnachweis erfolgt optional nach - 6.3.3 (Anhang A o. B) oder nach - 6.3.4

Gebrauchstauglichkeit

Bemessungssituation	Definiert die Bemessungssituation, die dem Nachweis im Grenzzustand der Gebrauchstauglichkeit zugrunde gelegt werden soll.
Nachweis der Absolutverformung	Führt den Gebrauchtsauglichkeitsnachweis mit der Verformungsdifferenz zum unverformten System.
Absolute Grenzverformung	Die maximal erlaubte absolute Verformung des Systems.
Nachweis der Relativverformung	Führt den Gebrauchstauglichkeitsnachweis bezogen auf effektive Längen, die durch die Wendepunkte der Biegelinie (Momentendurchgang) bestimmt werden.
Relative Grenzverformung	Die maximal erlaubte relative Verformung des Systems.

System

Material

Stahlart	Folgende Stahlarten sind aktuell wählbar:
Stahlgüte	Auswahl der Stahlgüte entsprechend der gewählten Stahlart.
Kennwerte	Ist unter Stahlart "benutzerdefinierte Art" festgelegt, kann über den Button in Dialog zur Definition der Kennwerte des Stahls eingeblendet werden. Ansonsten werden hier die Kennwerte des gewählten Stahls angezeigt.

System

Auswahl des Stützensystems. Über den Button kann ein grafischer Auswahldialog eingeblendet werden.
Höhe der Stütze, in x-Richtung.
Über den Button wird ein Dialog zur Auswahl eines Stahlprofils eingeblendet.
Die Bedienung des Dialogs ist programmübergreifend im Dokument " <u>Ouerschnittsauswahl-PLUS</u> " beschrieben.

Die Auswahl der Profile beschränkt sich auf die zur Anwendung des Ersatzstabverfahrens zugelassenen Profile.

Lager oben bzw. unten

Verschiebung ... Diskrete Lagerbedingungen für Translation bzw. Rotation (in/um y- bzw. z-Richtung): starr: wird das Häkchen per Mausklick entfernt, kann ein Wert eingegeben werden: 0 = frei > 0 elastisch gelagert

Material	0	
Stahlart	Baustahl 👻	
Stahlgüte	Baustahl	
System	Baustahl geglüht Baustahl themo	
Stützentyp	Baustahi wetterfest wamfester Stahl	
Höhe	Hohlprofil warm	
Querschnitt	benutzerdefinierte Art	

Lager oben	8
Verschiebung in y-Richtung uy	starr 🔽
Verschiebung in z-Richtung uz	starr 🔽
Verdrehung um y-Achse phiy	[kNm/rad] 0,0 🕅
Verdrehung um z-Achse phiz	[kNm/rad] 0,0 🕅
Lager unten	8
Verschiebung in y-Richtung uy	[kN/m] starr 📝
Verschiebung in z-Richtung uz	starr 🔽
Verdrehung um y-Achse phiy	[kNm/rad] 0,0 🕅
Verdrehung um z-Achse phiz	[kNm/rad] 0,0 🕅

Zwischenlagerung in y-Richtung

Hier können seitliche Halterungen definiert werden. Damit können angreifende Verbände (diskrete Stützungen) oder auch scheibenartige Aussteifungskonstruktionen (kontinuierliche Stützung) simuliert werden.

Beachte: Die Stützungen werden mit einem pauschalen, sehr hohen Federwert generiert, der zu einer quasi-starren Stützung führt. Sollen die tatsächlichen Federwerte genauer vorgegeben werden, ist auf das Programm BTII+ zurückzugreifen (siehe <u>Schnittstelle zu BTII+</u>).

Zwischenlagerung in y-Richtung	
Halterung	kontinuierlich gehalten 👻
Lage der Halterung	nicht gehalten
Bemerkungen	In Feldmitte gehalten
zum System	in Drittelspunkten gehalten in Viertelspunkten gehalten im Abstand x0 gehalten

Lage der Halterung

Bei der Stabilitätsuntersuchung ist es von essentieller Bedeutung, wo die seitlichen Stützungen am Querschnitt angreifen.

Hier wählen Sie den Angriffspunkt der seitlichen Stützung. Siehe folgende Skizze:

Zwischenlagerung in y-Richtung		
Halterung	im Abstand x0 gehalten	•
Höhe der Halterung x0	[m]	0,00
Lage der Halterung	am Schubmittelpunkt	•
Bemerkungen	am Schubmittelpunkt am Obergurt	5
zum System	am Untergunt	-

Bemerkungen

... zum System Über den Button wird der <u>Bemerkungseditor</u> aufgerufen. Dieser Text kann optional in der <u>Ausgabe</u> ein- oder ausgeblendet werden (Optionen sind sichtbar, wenn Text eingegeben wurde).

Belastung

Standardlasten / Assistent

Die Standardlasten können Sie gleich nach Programmstart im <u>Assistenten</u> eingeben. Mit dem Assistenten kommen Sie mit wenigen Eingaben schnell zu einem berechenbaren Grundsystem. Auf dieser Basis kann die Position dann weiter aufgebaut werden.

				A THE	
Assistent	Vorlagen	Öffnen			
System					
Stützentyp	Pendelstütze	-	222.0		
Höhe	[m]	5,00	200,0	200,0 +	
Querschnitt	HEB 200		300,0	300,0 🖡	
Vertikallasten			4	4	
ständig	[kN]	300,0	1	1	
veränderlich	[kN]	200,0	1		
Ausmitte in y-Richtung	[mm]	0	i	i	
Ausmitte in z-Richtung	[mm]	0	1	1	
Kopfmomente um y			1		
ständig	[kNm]	0,00	1	1	
veränderlich	[kNm]	0,00	1	1	
Windlasten			+		2,00
Wind in y	[kN/m]	0,00	1	1	
Wind in z	[kN/m]	0,00	1		
Anpralllasten			1	i	
Anpralllast in y	[kN]	0,0	1	1	
Anpralllast in z	[kN]	0,0	1	1	
Angriffspunkt	[m]	1,00	1	I.	
				-	
			7	7	

Vertikallast

Wert	Beschreibung	Systemskizze
ständig	Ständiger Anteil der charakteristischen Vertikallast.	+e+
veränderlich	Veränderlicher Anteil der charakteristischen Vertikallast.	
Ausmitte	Ausmitte e _y /e _z des Lastangriffspunktes in y/z-Richtung (vorzeichenbehaftet)	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Einwirkungsgruppe

Die Vertikallasten werden grundsätzlich in die Einwirkungskategorie "Nutzlasten der Klasse A" eingeordnet. Das Bearbeiten der <u>Einwirkung</u> kann später in der Lasttabelle vorgenommen werden.

Kopflasten horizontal

Bei Kragstützen

Wert	Beschreibung	Systemskizze
ständig in y bzw. z	Ständiger Anteil der charakteristischen Kopflast in y- bzw. z-Richtung.	↓ Kopflast horizontal ↓ in z-Richtung
veränderl ich in y bzw. z	Veränderlicher Anteil der charakteristischen Kopflast in y- bzw. z- Richtung.	y in y-Richtung ◀
		↓ ↓ Z

Einwirkungsgruppe

Die Horizontallasten am Stützenkopf werden grundsätzlich in die <u>Einwirkungskategorie</u> "Nutzlasten der Klasse A" eingeordnet.

Kopfmomente um y

Wert	Beschreibung	Systemskizze
ständig	Ständiger Anteil des charakteristischen Kopfmomentes um die y-Achse	
veränderlich	Veränderlicher Anteil des charakteristischen Kopfmomentes um die y-Achse	y ▲

Einwirkungsgruppe

Die Knotenmomente am Stützenkopf werden grundsätzlich in die Kategorie "Nutzlasten der Klasse A" eingeordnet.

Windlasten

Wert	Beschreibung	Systemskizze
Wind in y	Charakteristischer Wert der Windlast in y-Richtung (wy,k)	x wz,k
Wind in z	Charakteristischer Wert der Windlast in z-Richtung (wz,k)	y z wy,k

Einwirkungsgruppe

Die Windlasten werden logischerweise der Kategorie "Windlasten" eingeordnet.

Alternativgruppe

Die Windlasten werden der ersten freien Alternativgruppe (i.d.R. AltGrp=1) zugewiesen. Die Windlasten wirken damit alternativ.

Anpralllasten

Wert	Beschreibung	Systemskizze
Anprallast	Nennwert einer außergewöhnlichen Einzellast in y- bzw. z-Richtung (Ay / Az)	×
Angriffspunkt	Angriffspunkt a einer außergewöhnlichen Einzellast, gemessen vom Fußpunkt	Az Ay a z

Einwirkungsgruppe

Die Anpralllasten werden der Kategorie "Außergewöhnliche Einwirkung" eingeordnet.

Eigengewicht		Eigenschaften		д
automatisch berücksichtigen	Bei aktivierter Option wird das Eigengewicht der Stütze automatisch in Ansatz gebracht.	Grundparameter System Belastung ⊕ Bemessung Ausgabe		۹0
		Stablasten		0
Stablasten		Lasten	zur Tabelle	a 🔌
		Eigengewicht		0
Lasten		automatisch berücksichtigen		\checkmark
zur Tabelle: Die Tabelle zur Lasteir	ngabe wird eingeblendet.	benutzerdef. Einwirkungen		0
Die Eingebetebelle für die Lecter	ufan Sia auch über das Degister Lasten"	(35)	Bearbeiten	1
	uteri sie auch uber uas keyister "Lasteri	Bemerkungen		0
-auf.		zu den Einwirkungen		1

Für jede weitere Last erzeugen Sie zunächst über das 🎴-Symbol eine neue Lastzeile.

	Lastart	Richtung	pi	Pj	а	I	Bezeichnung	Lastangrif	fspunkt	Einwirkung	Zus	Alt
					[m]	[m]						
1	Kopflast	in x-Richtung	300,0 🖾					0/0	3	stāndig	0	0
2	Kopflast	in x-Richtung	200,0 🔛					0/0	3	Kat. A: Wohngebäude	0	0
	Kopflast Einzellast bei a Einzelmoment bei a Gleichstreckenlast Streckenlast von a bis a+I Dreieckslast Trapezlast über I											

Lastwertzusammenstellung

Über das "Pfeilsymbol" 🧧 kann eine Lastwertzusammenstellung aufgerufen werden – siehe Beschreibung im Programm <u>LAST+</u>.

Die Erklärung zu den einzelnen Eingabefeldern wird in der Statuszeile angezeigt, sobald Sie in ein Tipp: Eingabefeld klicken.

Lastart	Auswahl einer Lasta	rt wie nachfolgend dargestellt. pi, pj sind charakteristi	sche La	astwert	e.
Kopflast Gleichstreck	enlast	Last auf den Stützenkopf. Eine über die gesamte Stützenhöhe konstante Streckenlast.	pi		>
Einzellast		Eine Einzellast im Abstand a, gemessen vom Fußpunkt.			
			pi		-↓- a ^−
Einzelmomer	nt	Ein im Abstand a, gemessen vom Fußpunkt, angreifendes Moment.			
			pi		\ /a
Streckenlast	von a bis a+l	Eine über die Stützenhöhe linear veränderliche Streckenlast beginnend im Abstand a, gemessen vom Fußpunkt und einer Länge I. Eingabe der Lastwerte für Anfang und Ende.	pj pi		
Dreieckslast	über gesamten Stab	Eine über die gesamte Stützenhöhe veränderliche Dreieckslast.	pi		-+
Trapezlast ül	ber gesamten Stab	Eine über die gesamte Stützenhöhe veränderliche Trapezlast.	pj		+
Lastrichtung	Auswahl der Wirkric globale y- bzw. z-Ric	htung. Die Lasten bzw. Momente wirken in/um die htung. Einzellasten auch in x- Richtung .	рі		a _
Bezeichnung	Hier besteht die Mög Ausgabe übernomm	glichkeit, einen kurzen Texthinweis einzugeben. Der Te Ien.	ext wird	in die	

Lastangriffspunkt Auswahl der Lastposition am Querschnitt (Ober-/Unterkante, Bauteilachse) oder oder Eingabe der y/z - Koordinaten für die Ausmitte der Last. In der Lasttabelle kann der entsprechende Dialog über den Button werden. ständig Einwirkung Kategorie bzw. Art der Einwirkung der Last. ständig, mit kleinen Schwankungen Kat. A: Wohngebäude Kat. C: Versammlungsbereiche Kat. D: Verkaufsflächen Kat. E: Lagerflächen Zusammengehörigkeitsgruppe (Zus) Kat. F: Fahrzeuge <= 30 kN Kat. G: Fahrzeuge 30 kN < F <= 160 kN Zuordnung der Last zu einer Gruppe gemeinsam

wirkender Lasten. Die Gruppe wird durch eine vom Anwender einzugebende Gruppennummer definiert. Lasten, die einer Zusammengehörigkeitsgruppe zugeordnet sind, wirken stets gemeinsam. Lasten einer Zusammengehörigkeitsgruppe müssen einer Einwirkungsgruppe zugehören.

Kat. H: Dächer Windlasten Schnee H < 1000 m Schnee H > 1000 m Temperatur Baugrundsetzungen sonstige veränderliche Einwirkungen außergewöhnliche Einwirkungen Erdbeben

Alternativgruppe (Alt) Zuordnung der Last zu einer Gruppe sich gegenseitig ausschließender Lasten. Die Gruppe wird durch eine vom Anwender einzugebende Gruppennummer definiert.

Bemerkungen Eingabe einer eigenen Bemerkung zu den Lasten. Diese kann in der Ausgabe optional ein-/ausgeblendet werden. Die Optionen werden sichtbar, wenn Text eingegeben wurde.

Abb.:

Beispielgrafik zur Anwendung von Zusammengehörigkeitsund Alternativgruppen.

Last 1 und 3 wirken gemeinsam und werden daher der Zusammengehörigkeitsgruppe 1 zugeordnet. Ebenso Last 2 und 4 (Zusammengehörigkeitsgruppe 2).

Durch die Zuordnung von Zusammengehörigkeitsgruppe 1 und 2 zur Alternativgruppe 1 wird festgelegt, dass diese beiden Zusammengehörigkeitsgruppen nicht gemeinsam auftreten.

Angehängte Pendelstützen

Für <u>Kragstützen</u> werden für die angehängten Pendelstützen horizontale Ersatzlasten generiert.

(Die Eingabefelder erscheinen nur bei ausgewählter Kragstütze).

Anordnung	Wirkungsrichtung der angehängten Pendelstütze in y- bzw. z-Richtung
Höhe h	Höhe der angehängten Pendelstütze
Normalkraft Nd	Bemessungswert der vertikalen Last auf die Pendelstützen.

Anzahl Anzahl der in Reihe angehängten Pendelstützen

Angehängte Pendelstützen	0
Pendelsystem	🔘 1/1 🔘 🛃 🗙 🛅 🌛
Anordnung	in z-Richtung 🔹
Höhe h	in y-Richtung
Normalkraft Nd	In z-Richtung [KIV] U,UU
Anzahl	1
Bemerkungen	0
zu den Einwirkungen	

Bemerkungen

... zu den Einwirkungen

Blendet den <u>Bemerkungseditor</u> ein. Der Bemerkungstext kann optional in die <u>Ausgabe</u> übernommen werden.

Bemessung und Nachweisführung

Nachweise im Grenzzustand der Tragfähigkeit

Grenzzustände

Die Nachweise im Grenzzustand der Tragfähigkeit umfassen folgende Einzelnachweise:

- Nachweis der Tragfähigkeit des Querschnittes unter Berücksichtigung des lokalen Beulversagens (Nachweis der c/t-Grenzwerte und Einordnung in Querschnittsklassen).
- Nachweis der plastischen Querschnittstragfähigkeit nach EN 1996-1-1, Absatz 6.2. Wurde unter Grundparameter die Option "Elastische Bemessung" gewählt, wird der elastische Nachweis (Nachweis der Vergleichsspannungen) nach Gl. 6.1 geführt.
- Stabilitätsnachweis nach EN 1993-1-1, Absatz 6.3.

Die Stabilitätsnachweise auf Biegeknicken und Biegedrillknicken basieren auf dem so genannten Ersatzstabverfahren.

Bei Anwendung des vereinfachten Nachweises wird eine Eigenwertberechnung unter Verwendung der Unterraummethode durchgeführt. Die Eigenwertbestimmung des FE-Problems erfordert die Lösung des folgenden allgemeinen Matrizeneigenwertproblems für den kleinsten Eigenwert ηκi. Diese Aufgabe übernimmt im Programm STS+ der Rechenteil unseres Programms BTII+. Diese Untersuchung wird für jede Lastfallkombination, getrennt für die jeweiligen Bemessungssituationen, durchgeführt. Damit ist sichergestellt, dass die dem Sicherheitskonzept folgende, tatsächlich maßgebende Versagenssituation gefunden wird.

Nachweise im Grenzzustand der Gebrauchstauglichkeit

Es werden die Verschiebungen in die jeweiligen Hauptachsen sowie die resultierende Verschiebung nach Theorie I. Ordnung ermittelt. Diese werden mit den Anwendervorgaben verglichen. Der Nachweis gilt als erfüllt, wenn die so ermittelten Verschiebungen kleiner oder höchstens gleich den vom Anwender vorgegebenen Werten sind.

Lastweiterleitung

Aufruf weiterer FRILO-Bemessungsprogramme – siehe auch <u>Schnittstellen</u>.

Unter dem Begriff Lastweiterleitung werden zwei grundsätzliche Erweiterungsfunktionen zusammengefasst, die Systemübergabe an BTII+ und die Weiterleitung der Auflagerkräfte zu Berechnung von Anschlusskonstruktionen.

Systemübergabe an das Programm BTII+

Die erste Erweiterungsfunktion besteht darin, das Stützensystem an das Programm BTII+ zu exportieren, um den Anwender die Möglichkeit zu geben, eventuell komplexere Systeme berechnen zu können oder um Vergleichsrechnungen anzustellen.

Höhere Anforderungen an die Berechnung von Stützensystemen, die ein Programm wie STS+ nicht erfüllen kann, kommen bspw. dann zum Tragen, wenn die Lagerbedingungen nicht dem vorgeschriebenen Standard entsprechen oder Lasten anzusetzen sind, die zu planmäßiger Torsion führen. Solche Systeme können dann nicht mehr nach dem Ersatzstabverfahren nachgewiesen werden. Hier ist dann der Nachweis nach Theorie II. Ordnung unter Berücksichtigung der Wölbkrafttorsion erforderlich. Diese Leistungsparameter bietet bspw. unser Programm BTII+.

Das Stützensystem wird in BTII+ durch einen Systemabschnitt dargestellt. Die Lagerbedingungen entsprechen dem statischen System der Stütze einschließlich der seitlichen Halterung.

Weiterleitung von Auflagerkräften

STS+ bietet eine Lastweiterleitung an Nachweisprogramme zur Berechnung von Anschluss- bzw. Gründungskonstruktionen an.

Eine Schnittstelle zu den Programmen *Einzelfundament FD+ / Blockfundament FDB+* erlaubt dem Anwender, die Auflagerkräfte des Stützensystems für den Nachweis der ggf. direkt darunter liegenden Fundamente zu verwenden. Nach Auswahl des Fundamentprogramms wird dieses gestartet und automatisch die Belastungen in Form der im STS+ verwendeten Einzellastfälle generiert. Dem Benutzer obliegen anschließend nur noch die Vervollständigung der fundamentspezifischen Angabe sowie die Kontrolle der übernommenen Lastwerte.

Die Schnittstellen zu *ST3* und *ST6* (*Fußplatte/Fußpunkt Stahlstütze*) erlauben die Weitergabe der charakteristischen Auflagerkräfte oder der Bemessungswerte der Auflagerkräfte zur Berechnung von gelenkigen oder eingespannten Stützenfußkonstruktionen.

Ausgabe

Durch Anklicken der verschiedenen Ausgabe-Optionen legen Sie den Umfang der Ausgaben fest (bei markierter Option wird der entsprechende Inhalt ins Ausgabedokument geschrieben)

Die Optionen werden durch Tooltips bzw. erläuternden Text im unteren Infobereich beschrieben.

Maßstab Systemgrafik

Durch Ändern des voreingestellten Maßstabes kann die Größe der Grafik im Ausgabedokument bei Bedarf angepasst werden.

Ausgabe als PDF-Dokument

Über das Register "Dokument" wird das Ausgabedokument im PDF-Format angezeigt und kann gedruckt und gespeichert werden.

Die allgemeine Beschreibung der Ausgabe wird im Dokument:

Ausgabe und Drucken

beschrieben.

Eigenschaften	д
Grundparameter System	۹ 🕲
Belastung	
. Bemessung	
Ausgabe	

Allgemein	0
Kurzdruck	
Legenden	
System	0
System- und Lastgrafik 2D	
Systemgrafik 3D	V
Erzwinge Maßstab	
Lasten	0
Einwirkungen	V
Ergebnisse	0
alle bekannten Schnitte	
Auflagerkräfte - charakteristisch je Lastfall	
Auflagerkräfte - Bemessungswerte	

	FRILO Software		Projekt: De	emo-Stahl		1111
See. N	Stuttgarter Str. 36	Tel: +49 711 810	020 Position: ST	TS+-001		
Page 1	70469 Stuttgart	Fax: +49 711 858	10.04.2015	5	Seite	2
	Querschnitt - HEB 200)				
	Profil Stea (lights Höha)	h = 200 mm				
	Ober- und Untergurt	b = 200 mm	t = 15 mm			
	Fläche	r = 18 mm A = 78.1 cm ²				
Page 2	Statische Werte	$l_y = 5696 \text{ cm}^4$ $l_z = 2003 \text{ cm}^4$	$W_y = 570 \text{ cm}^3$ $W_z = 200 \text{ cm}^3$			
N N	Lagerbedingungen					
	Ne v	Verschiebunge	1*)	Ve	rdrehungen*)	۰
	[m]	[kN/m] [kN/m]	[kN/m]	[kNm/rad]	[kNm/rad]	[kNm/rad]
R 0	1 0.00	-1 -1	-1	-1	0.0	0.0
-	") -1 = starr, 0 = frei,	>0 = elastisch			0.0	0.0
Page 3 9	Belastung					
	Einwirkungen					
	ld Typ Situat	tion Name		Ysup	για ψο	ψ1 ψ2
	99 G P/T	ständig	- have also	1.35	1.00 1.00	1.00 1.00
m	I U P/I	Kat. A: wonn,	jebaude	1.50	0.00 0.70	0.50 0.30
Page 4	Art 4 = Einzelmom	ient kNm 14 = K	opflast kN			
	Das Eigengewicht wird	d automatisch berücksicht	igt.			
	Nr : Nummer der Last Art : Art der Last	+		Ausgabe	eoption Leg	enden
Is	pi : Lastordinate bei xe Drdinate des erste	z-Achse, oder Verwölbung ra in Lastwertes				
ST		ra+l				
- 15.	pj : Lastordinate bei x= : Länge der Last					144 (144)
17 - 1 - 15 -	pj : Lastordinate bei xe i : Länge der Last Ewg : Einwirkung Nr Art	in/um	ja	a	pi	EWg
12 12 -	pi : Lastordinate beixa i : Länge der Last Ewg : Einwirkung Nr Art	in/um	pi	a [m]	pj [I	m]
- 18- 1-17- 1-16- 1-1 <u>5</u> -	pj : Lastordinate bei va i : Lange der Last Ewg : Einwirkung Nr Art 1 4 2 14	in/um z x	pi 300.00 200.0	a [m] 0.00	pj [1	m] 99 1

Häufig gestellte Fragen

System

Können mit STS+ auch Mehrfeldsysteme berechnet werden?

Nein. Mit STS+ können nur Einfeldstützen berechnet werden. Allerdings sind zusätzliche seitlichen Halterungen möglich. Es können diskrete oder kontinuierliche seitlichen Halterungen definiert werden. Der für die Stabilitätsnachweise relevante Angriffspunkt kann auf den sowohl Ober- oder Untergurt als auch auf den Schubmittelpunkt festgelegt werden.

Lasten

Können Lasten angegeben werden, die zu planmäßiger Torsion führen?

Nein. Lasten, die zu planmäßiger Torsion führen, können von STS+ nicht berücksichtigt werden. Der wichtigste Grund für diese Einschränkung ist die Tatsache, dass bei derartigen Lastsituationen der vereinfachte Ersatzstabnachweis nicht mehr angewendet werden darf. In einem solchen Fall muss eine Berechnung nach Wölbkrafttorsionstheorie II. Ordnung erfolgen. Es sei an dieser Stelle darauf hingewiesen, dass unser Modul BTII+ diese Aufgabe erledigen kann.

Berechnung

Ist neben dem Nachweis auf Grundlage des Ersatzstabverfahrens auch eine Berechnung nach Theorie II. Ordnung möglich?

Nein. Systeme, die eine Berechnung nach Theorie II. Ordnung erfordern, können jedoch mit unserem Modul BTII+ berechnet werden.